

Contents:

	Introduction

	Installation

	Examples
	EV3
	Connect with the EV3 device

	EV3’s properties

	Direct commands

	Touch
	Asking for the current state

	Multiple instances of class Touch

	Bump-Mode

	Infrared
	Asking for the distance from a surface

	Asking for a beacon’s position

	Using up to four beacons

	Using the beacon as a remote control

	Reading multiple remote control channels simultaneously

	Ultrasonic
	Asking for the distance from a surface

	Color
	The reflected intensity of red light

	Recognize colors

	Red green blue Color Intensities

	Balanced red green blue Color Intensities

	Ambient light intensity

	Gyro
	Asking for the current orientation angle

	Asking for the current rotation rate

	Asking for the current state (angle and rate)

	Reset the original orientation

	Sound
	Play a Tone

	Play a Sound File

	Play a Sound File as a Thread Task

	Play a local Sound File

	Jukebox
	Change Color

	Play Tone

	Playing the EU-Antemn

	Combine Happy Birthday with the Triad

	Singing Canon with an EV3 brick

	Voice
	Get your EV3 Device Speaking

	Use Voice for your User Interface

	Combine Text to Speech with existing Sound Files

	Motor
	Properties of Class Motor

	Precise and Smooth Motor Movements

	Timed and Smooth Motor Movements

	Unlimited Motor Movements

	Two Wheel Vehicle
	Calibration

	Precise Driving

	Tracking the vehicle’s Position and Orientation

	Regulated Movements

	File System
	Method list_dir

	Method create_dir

	Method del_dir

	Method read_file

	Method write_file

	Method copy_file

	Method del_file

	PID Controller
	Background

	Close but not too Close

	Keep the Distance

	Follow Me

	API documentation
	Static methods
	LCX

	LCS

	LVX

	GVX

	port_motor_input

	pid

	Classes
	EV3

	Touch

	Infrared

	Ultrasonic

	Color

	Gyro

	Sound

	Jukebox

	Voice

	Motor

	TwoWheelVehicle

	FileSystem

Introduction

Use python3 to program your LEGO Mindstorms EV3. The program runs on
the local host and sends direct commands to the EV3 device. It
communicates via Bluetooth, WiFi or Usb.

There is no need to boot the EV3 device from an SD Card or manipulate
its software. You can use it as it is, the EV3 is designed to execute
commands which come from outside.

If you like to code from scratch, then read this blog [http://ev3directcommands.blogspot.com].

Installation

Use pip to install module ev3_dc:

python3 -m pip install --user ev3_dc

or:

pip3 install --user ev3_dc

pip also allows to upgrade module ev3_dc:

python3 -m pip install --upgrade --user ev3_dc

ev3_dc supports text to speech [https://en.wikipedia.org/wiki/Speech_synthesis]. You need to
install ffmpeg [https://ffmpeg.org/] to get it working. On a
Windows machine, you have to download an archive (e.g. this [https://www.gyan.dev/ffmpeg/builds/ffmpeg-git-essentials.7z]) and
unpack it. Finally you have to add the directory with the binary files
to your environment variable path. MacOS and Unix provide
installation packages (MacOS: brew install ffmpeg, Ubuntu: sudo
apt-get install ffmpeg).

Before you can use Bluetooth, you need to couple the computer (that
executes the python programs) and the EV3 brick.

If you own a compatible WiFi dongle, and you want to use it, you have
to connect the EV3 brick with the WiFi network.

Protocol USB is the fastest option, both to establish the connection
and to communicate. But using USB may need some additional
installations.

Read more in section Connect with the EV3 device.

Examples

	EV3
	Connect with the EV3 device
	USB

	Bluetooth

	WiFi

	EV3’s properties
	name

	sleep

	volume

	battery

	sensors

	sensors_as_dict

	system

	network

	memory

	protocol

	host

	verbosity

	sync_mode

	Direct commands
	The art of doing nothing

	Tell your EV3 what to do

	Reading data from EV3’s sensors

	Moving motors

	Touch
	Asking for the current state

	Multiple instances of class Touch

	Bump-Mode

	Infrared
	Asking for the distance from a surface

	Asking for a beacon’s position

	Using up to four beacons

	Using the beacon as a remote control

	Reading multiple remote control channels simultaneously

	Ultrasonic
	Asking for the distance from a surface

	Color
	The reflected intensity of red light

	Recognize colors

	Red green blue Color Intensities

	Balanced red green blue Color Intensities

	Ambient light intensity

	Gyro
	Asking for the current orientation angle

	Asking for the current rotation rate

	Asking for the current state (angle and rate)

	Reset the original orientation

	Sound
	Play a Tone

	Play a Sound File

	Play a Sound File as a Thread Task

	Play a local Sound File

	Jukebox
	Change Color

	Play Tone

	Playing the EU-Antemn

	Combine Happy Birthday with the Triad

	Singing Canon with an EV3 brick

	Voice
	Get your EV3 Device Speaking

	Use Voice for your User Interface

	Combine Text to Speech with existing Sound Files

	Motor
	Properties of Class Motor
	busy

	motor_type

	port

	position

	delta_time

	speed

	ramp_up and ramp_down

	ramp_up_time and ramp_down_time

	Precise and Smooth Motor Movements
	move_to

	move_by

	start_move_to

	start_move_by

	Timed and Smooth Motor Movements
	move_for

	start_move_for

	Unlimited Motor Movements

	Two Wheel Vehicle
	Calibration
	Determine the wheel’s radius

	Determine the wheel’s tread

	Precise Driving
	Define a Parcours

	Sensor controlled Driving

	Plotting the Energy Consumption

	Tracking the vehicle’s Position and Orientation
	Print Current Position

	Visualize the Movement

	Regulated Movements

	File System
	Method list_dir

	Method create_dir

	Method del_dir

	Method read_file

	Method write_file

	Method copy_file

	Method del_file

	PID Controller
	Background

	Close but not too Close

	Keep the Distance

	Follow Me

EV3

Class EV3 is the base class of ev3_dc. The
constructor of EV3 establishes a connection between your computer and
your EV3 brick. Its properties allow to get some information about the
EV3’s state. A few of them allow to change its behaviour. But the
power of this class comes from its methods
send_direct_cmd() and
send_system_cmd() which send bytestrings to your
EV3 brick. If these bytestrings are well formed, your EV3 brick will
understand and execute their operations. If a bytestring requests it,
the EV3 brick answers with another bytestring, which contains the
return data. For using these methods, you need to know the details of
direct and system commands.

To establish a connection is a requirement for using class EV3. This
is, what the next section deals with.

Connect with the EV3 device

We test all three connection protocols, which the EV3 device
provides. If you don’t own a WiFi dongle, you still can use USB and
Bluetooth.

USB

In the background python modules often use programs, written
in C. This means: the module is a thin python layer, which calls a
compiled library, often named backend. In case of USB devices, there
exists a number of different backends, e.g. libusb0.1, libusb1.0,
OpenUSB.

For the installation process of the software, this says: You have to
install some python code, which automatically has been done, when
module ev3_dc was installed. But when ev3_dc tries to connect via USB, it
needs to load a backend and it may happen, that it does not find any.

Let’s look at the preparation steps.

Linux

On my Ubuntu system, I first installed backend
libusb1.0 with this terminal command:

sudo apt-get install libusb-1.0-0

Second I made shure to have the permission to connect the EV3
device. I added this udev rule [https://linuxconfig.org/tutorial-on-how-to-write-basic-udev-rules-in-linux]
(as file /etc/udev/rules.d/90-legoev3.rules):

ATTRS{idVendor}=="0694",ATTRS{idProduct}=="0005",MODE="0666",GROUP="christoph"

This gives all members of group christoph (me allone) read and write
permissions to product 0005 (EV3 devices) of vendor 0694 (LEGO
group).

Reboot the system or alternatively run this terminal command:

sudo udevadm control --reload-rules && udevadm trigger

Windows 10

Download libusb1.0 from the libusb project [https://github.com/libusb/libusb/releases]
(I additionally had to install program 7 zip [https://www.7-zip.org]).

Copy file libusb-1.0.dll from libusb-1.0.xy.7z\MinGW64\dll\
into directory C:\Windows\System32.

Follow this instruction [https://www.smallcab.net/download/programme/xm-07/how-to-install-libusb-driver.pdf]
and replace Xin-Mo Programmer by EV3 (when I did it, I clicked the
Install Now button in the Inf-Wizard and it was successfully
installing).

MacOS

In case of MacOS, ev3_dc imports and uses module hidapi (whereas on
Linux or Windows systems it imports module pyusb). As far as I know,
the connection works out of the box (I don’t own a Mac).

Test USB

Take an USB cable and connect your EV3 device (the 2.0 Mini-B port,
titled PC) with your computer. Then run this program.

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB) as my_robot:
 print(my_robot)

If everything is o.k., you will see an output like:

USB connected EV3 00:16:53:42:2B:99 (Hugo)

It needs a communication between the program and the EV3 device to
know my EV3’s name (Hugo) and its MAC-address [https://en.wikipedia.org/wiki/MAC_address]
(00:16:53:42:2B:99). The MAC-address also is known as serial number
or pysical address and you can read it from your EV3’s display under
Brick Info / ID. Therefore the result documents, the connection was
successfully established.

Bluetooth

On Windows systems, Bluetooth works from Python 3.9 upwards. This
says: your operating system can’t be Windows 7 or earlier. Maybe you
need to install a newer python3 version. This can be done from Python
Releases for Windows [https://www.python.org/downloads/windows/].

On Linux systems, Bluetooth AutoEnable needs to be deactivated. I (my
computer has an Ubuntu 20.10 operating system) had to comment out the
last line in file /etc/bluetooth/main.conf (which needs superuser
access rights):

AutoEnable defines option to enable all controllers when they are found.
This includes adapters present on start as well as adapters that are plugged
in later on. Defaults to 'false'.
AutoEnable=true

Couple [https://nrca.zendesk.com/hc/en-us/articles/115002669503-Bluetooth-How-to-connect-the-EV3-Robot-to-your-PC-Computer-by-wireless-Bluetooth]
(only steps 1 - 12) your computer and your EV3 device via Bluetooth
and call the EV3 constructor with protocol=ev3.BLUETOOTH. This
says: replace MAC-address 00:16:53:42:2B:99 with the one of your
EV3, then run this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_robot:
 print(my_robot)

My output was:

Bluetooth connected EV3 00:16:53:42:2B:99 (Hugo)

Hopefully, you will see something similar. If so, your Bluetooth
connection works.

WiFi

If you own a WiFi dongle, you can connect [https://de.mathworks.com/help/supportpkg/legomindstormsev3io/ug/connect-to-an-ev3-brick-over-wifi.html]
(only steps 1 - 12) your EV3 device via WiFi with your local
network. If your computer also is connected (either via WiFi or via
Ethernet), they can communicate. If these conditions are fulfilled,
you can call the EV3 constructor with protocol=ev3.WIFI. Replace
MAC-address 00:16:53:42:2B:99 with the one of your EV3, then start
this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.WIFI, host='00:16:53:42:2B:99') as my_robot:
 print(my_robot)

As you may have expected, my program’s output was:

WiFi connected EV3 00:16:53:42:2B:99 (Hugo)

I hope you can connect at least one protocol, if it’s really only one
and this is USB, you have no wireless connection, which is a
restriction. If you have more than one option, you are lucky. USB is
fast connected and fast in data transfer. When you start your EV3
device, USB is ready without any coupling. I prefer it for
developing.

EV3’s properties

The properties of class EV3 provide easy access to
the state of the EV3 device. They e.g. describe the battery status,
the free memory space or the connected sensors and motors. I will
present some short programs to show their usage.

A few of the properties also allow to change the state of the EV3
device, you can e.g. easily change the sound volume or the EV3’s name.

name

Property name allows to read and change the
name of the EV3 device. This is the one, you see in the first line of
your EV3’s display, which you can change under menu item Brick
Name. Replace MAC-address 00:16:53:42:2B:99 with the one of
your EV3 device and select the protocol you prefer, then start this
program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 print('This is', my_ev3.name)

My program’s output was:

This is Hugo

Now let’s change the name of the EV3 device with this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 my_ev3.name = 'Evelyn'

Control your EV3’s display, if the name really did change.

sleep

Property sleep allows to read and change the
timespan (in minutes), the EV3 waits in idle state before it
automatically shuts down. You can change this timespan under menu item
Sleep. Your display allows the following values: 2 min., 5
min., 10 min., 30 min., 60 min. and never.

Replace MAC-address 00:16:53:42:2B:99 with the one of
your EV3 device and select the protocol you prefer, then start this
program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 print(f'Currently sleep is set to {my_ev3.sleep} min.')

My program’s output was:

Currently sleep is set to 30 min.

We change the sleeping time of the EV3 device with this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 my_ev3.sleep = 12

Your EV3 device accepts all values from 0 to 120, but your EV3’s
display will not present them correctly and is blocked for any further
changes of the sleeping time. Therefore change it once again to one of
the above mentioned values (never is value 0).

volume

Property volume allows to read and change the
sound volume. You can also change the sound volume under menu item
Volume. Your display allows the following values: 0 %, 10 %,
20 %, …, 100 %.

Replace MAC-address 00:16:53:42:2B:99 with the one of
your EV3 device and select the protocol you prefer, then start this
program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 print(f'Currently the sound volume is set to {my_ev3.volume} %')

My program’s output was:

Currently the sound volume is set to 10 %.

We change the sound volume of the EV3 device with this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 my_ev3.volume = 18

Your EV3 device accepts all values from 0 to 100, but your EV3’s
display will not present all of them correctly and will be partly
blocked. Therefore change it once again to one of the above mentioned
values.

battery

Property battery allows to get informations
about the EV3’s battery state. You get its voltage, its current and
its state of charge.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 print(my_ev3.battery)

My program’s output was:

Battery(voltage=7.123220920562744, current=0.19781701266765594, percentage=5)

The voltage is in Volt [https://en.wikipedia.org/wiki/Volt], the
current in Ampère [https://en.wikipedia.org/wiki/Ampere]. You can
also access the single values:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 bat = my_ev3.battery
 print(f'the power consumption is {bat.voltage * bat.current:4.2f} Watt')

Don’t code {my_ev3.battery.voltage * my_ev3.battery.current:4.2f},
this would result in two request-reply-cycles, because the battery
state is requested again whenever you reference property battery.

My program’s output was:

the power consumption is 1.44 Watt

Maybe you like to recalculate the power consumption, when some motors
are running. The value above is without motor movement and is typical
for ARM architecture [https://en.wikipedia.org/wiki/ARM_architecture] computers.

sensors

Property sensors informs about the sensor types
(motors also are sensors), which are connected to the EV3 brick.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(my_ev3.sensors)

My program’s output was:

Sensors(Port_1=16, Port_2=33, Port_3=5, Port_4=1, Port_A=7, Port_B=8, Port_C=None, Port_D=7)

Read chapter 5 Device type list of document EV3 Firmware Developer
Kit [https://www.lego.com/cdn/cs/set/assets/blt77bd61c3ac436ea3/LEGO_MINDSTORMS_EV3_Firmware_Developer_Kit.pdf],
which lists the EV3 sensors. Each sensor is identified by an integer
number:

	NXT_TOUCH = 1

	NXT_LIGHT = 2

	NXT_SOUND = 3

	NXT_COLOR = 4

	NXT_ULTRASONIC = 5

	NXT_TEMPERATURE = 6

	EV3_LARGE_MOTOR = 7

	EV3_MEDIUM_MOTOR = 8

	EV3_TOUCH = 16

	EV3_COLOR = 29

	EV3_ULTRASONIC = 30

	EV3_GYRO = 32

	EV3_IR = 33

Your EV3 brick names its sensor ports by numbers 1 to 4 and its motor
ports by characters A to D.

sensors_as_dict

Property sensors_as_dict provides the same information as property sensors but
presents it in a form, which supports automatic handling.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 sensors = my_ev3.sensors_as_dict

 assert sensors[ev3.PORT_1] == ev3.EV3_TOUCH, \
 'no EV3 touch connected at port 1'
 assert sensors[ev3.PORT_2] == ev3.EV3_IR, \
 'no EV3 infrared connected at port 2'
 assert sensors[ev3.PORT_3] == ev3.NXT_ULTRASONIC, \
 'no NXT ultrasonic connected at port 3'
 assert sensors[ev3.PORT_4] == ev3.NXT_TOUCH, \
 'no NXT touch connected at port 4'
 assert sensors[ev3.PORT_A_SENSOR] == ev3.EV3_LARGE_MOTOR, \
 'no large motor connected at port A'
 assert sensors[ev3.PORT_B_SENSOR] == ev3.EV3_MEDIUM_MOTOR, \
 'no medium motor connected at port B'
 assert sensors[ev3.PORT_D_SENSOR] == ev3.EV3_LARGE_MOTOR, \
 'no large motor connected at port D'

 print('everything is as expected')

Some remarks:

	Adapt this program to your connected sensor combination.

	Using constants for the ports and sensors helps for readability.

	Motors can be addressed as sensors or as motors, this is why we
use two different constants for the sensor context and the
movement context. If you use a motor as sensor, address it
by e.g. constant PORT_A_SENSOR.

system

Property system tells some informations about
the EV3’s operating system version, firmware version and hardware
version. Operating system and firmware additionally know their build
numbers.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as my_ev3:
 print(my_ev3.system)

My program’s output was:

System(os_version='Linux 2.6.33-rc', os_build='1212131117', fw_version='V1.09H', fw_build='1512030906', hw_version='V0.60')

The operating system is Linux, which runs a lot of devices like smart
TVs, routers, etc. On my EV3 device, the Linux version [https://en.wikipedia.org/wiki/Linux_kernel_version_history] is 2,
the major revision is 6, the minor revision is 33 and it’s a release
candidate. This says, it stems from a time before 24 February 2010.
If you need it more precisely, you also get the build number of the
operating system version.

The firmware is the software, which LEGO® developped, it allows to
e.g. control the display, communicate with sensors and motors or run
programs. My EV3 has been updated to version V1.09H and its hardware
version is V0.60.

network

Property network allows to get informations
about the WiFi connection of the EV3 device. Therefore it only works
if the connection protocol is WIFI.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, connect your EV3 device via WiFi with your local network, then
start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.WIFI, host='00:16:53:42:2B:99') as my_ev3:
 print(my_ev3.network)

My program’s output was:

Network(name='NetOfTheSix', ip_adr='192.168.178.35', mac_adr='44:49:94:4F:FC:C2')

This says:

	The name of the WiFi network [https://en.wikipedia.org/wiki/Wireless_LAN] is NetOfTheSix,
which must operate on 2.4 GHz (the EV3 device does not support 5
GHz WiFi).

	In this network, my EV3 device got the IPv4 address [https://en.wikipedia.org/wiki/IPv4] 192.168.178.35.

	My WiFi dongle (this is the device, which connects to the network)
has the mac-address 44:49:94:4F:FC:C2, which is different from
the mac-address of the EV3 device.

If you prefer to access the single values directly, then do:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.WIFI, host='00:16:53:42:2B:99') as my_ev3:
 print(f'name of the network: {my_ev3.network.name}')
 print(f'ip_adr of the EV3 device: {my_ev3.network.ip_adr}')
 print(f'mac_adr of the WiFi dongle: {my_ev3.network.mac_adr}')

This program’s output was:

name of the network: NetOfTheSix
ip_adr of the EV3 device: 192.168.178.35
mac_adr of the WiFi dongle: 44:49:94:4F:FC:C2

memory

Property memory informs about EV3’s memory
space.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(f'{my_ev3.memory.free} of {my_ev3.memory.total} kB memory are free')

My program’s output was:

4572 of 6000 kB memory are free

This says, 6 MB is the total user memory space of my EV3 device, which
seems to be small, but is large enough for the things I really do on
this device.

protocol

Property protocol tells the protocol type of
the EV3’s connection. This sounds weird because we explicitly set it,
when we create an EV3 instance and we can’t change it. But think of
the situation, when you call a function or method, which you did not
code and it returns an EV3 instance. Maybe you want to know, how this
instance is connected.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(f'this EV3 device is connected via {my_ev3.protocol}')

This program’s output:

this EV3 device is connected via USB

host

Property host tells the MAC-address [https://en.wikipedia.org/wiki/MAC_address] of the EV3 device. As
above this is thought for EV3 instances, you got from somewhere.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(f'{my_ev3.host} is the MAC-address of this EV3 device')

This program’s output:

00:16:53:42:2B:99 is the MAC-address of this EV3 device

verbosity

Setting property verbosity to a value greater
than zero allows to see the communication data between the program and
the connected EV3 device.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 my_ev3.verbosity = 1
 bat = my_ev3.battery

This program’s output:

19:45:30.891798 Sent 0x|0E:00|2A:00|00|09:00|81:01:60:81:02:64:81:12:68|
19:45:30.898732 Recv 0x|0C:00|2A:00|02|7C:03:F1:40:40:07:3B:3E:64|

Some remarks:

	Referencing the battery property by bat = my_ev3.battery initiates
a request-response-cycle which asks for the current state of the battery and
gets some data back.

	Easy to understand are the timestamps. Between the request and the
response lies a timespan of 7 ms.

	The request and response themselves are quite cryptic! If you want
to understand them, read section Direct commands

sync_mode

Property sync_mode has a very special meaning
for direct commands. It influences the way, how requests are
handled. If its value is SYNC, then all requests will be answered
and the calling program will always wait until the response did
arrive, even if the direct command does not return any data. If its
value is ASYNC, then method send_direct_cmd()
never will wait until a response comes back. Instead it will return
the message counter and it is the responsibility of the programmer to
call method wait_for_reply(). This allows to
continue with processing until the response is needed and then
wait and get it. The third value STD will only wait for replies, if the direct
command returns data.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, select the protocol you prefer, then start this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(f"protocol USB's default sync_mode is {my_ev3.sync_mode}")
 my_ev3.name = 'Evelyn'
 my_ev3.verbosity = 1
 my_ev3.name = 'Hugo'

This program’s output:

protocol USB's default sync_mode is SYNC
19:28:11.184508 Sent 0x|0D:00|2B:00|00|00:00|D4:08:84:48:75:67:6F:00|
19:28:11.193370 Recv 0x|03:00|2B:00|02|

Protocol USB is that fast, that sometimes the EV3 device is not able
to handle all direct commands correctly. sync_mode = SYNC
guaranties, that each direct command has finished, before the next one
is sent. Therefore protol USB’s default snc_mode is SYNC.

The direct command, which changes EV3’s name does not reply anything,
but our program had to wait about 9 ms until the response did arrive.

sync_mode SYNC’s 2nd advantage is, that errors can’t occur
silently. Every direct command replies and every reply contains the
return code of the direct command.

Now let’s change the program and explicitly set sync_mode = STD:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 print(f"protocol USB's default sync_mode is {my_ev3.sync_mode}")
 my_ev3.name = 'Evelyn'
 my_ev3.sync_mode = ev3.STD
 my_ev3.verbosity = 1
 my_ev3.name = 'Hugo'

This program’s output:

protocol USB's default sync_mode is SYNC
19:34:35.935427 Sent 0x|0D:00|2B:00|80|00:00|D4:08:84:48:75:67:6F:00|

With sync_mode = STD, the EV3 device does not reply this direct
command.

Direct commands

Document EV3 Firmware Developer Kit [https://www.lego.com/cdn/cs/set/assets/blt77bd61c3ac436ea3/LEGO_MINDSTORMS_EV3_Firmware_Developer_Kit.pdf]
is the reference book of LEGO EV3 direct commands and will help
you to understand the details.

The art of doing nothing

We send the idle operation of the EV3 device to test the communication speed.

Replace MAC-address 00:16:53:42:2B:99 with the one of your EV3
device, then run this program:

import ev3_dc as ev3

with ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99') as my_ev3:
 my_ev3.verbosity = 1
 my_ev3.sync_mode = ev3.SYNC
 ops = ev3.opNop
 my_ev3.send_direct_cmd(ops)

If everything is o.k., you will see an output like:

20:09:32.162156 Sent 0x|06:00|2A:00|00|00:00|01|
20:09:32.168082 Recv 0x|03:00|2A:00|02|

Some remarks:

	Both lines start with a timestamp. A bit shorter than 6 ms was the
timespan of this request-reply-cycle.

	The first line shows the sent data in a binary format. We separate
bytes by colons “:” or vertical bars “|”. Vertical bars separate
these groups of bytes:

	Length of the message (bytes 0, 1): The first two bytes are
not part of the direct command itself. They are part of the
communication protocol. The length is coded as a 2-byte unsigned
integer in little endian [https://en.wikipedia.org/wiki/Endianness] format,
0x|06:00| therefore stands for the value 6.

	Message counter (bytes 2, 3): This is the footprint of the
direct command. The message counter will be included in the
corresponding reply and allows to match the direct command and
its reply. This too is a 2-byte unsigned integer in little
endian format. The EV3 class starts counting with 0x|2A:00|,
which is the value 42.

	Message type (byte 4): For direct commands it may have the
following two values:

	DIRECT_COMMAND_REPLY = 0x|00|

	DIRECT_COMMAND_NO_REPLY = 0x|80|

In our case we did set sync_mode=SYNC, which means: we want the
EV3 to reply all messages.

	Header (bytes 5, 6): These two bytes, the last in front of
the first operation are the header. It includes a combination of
two numbers, which define the memory sizes of the direct command
(yes, its plural, there are two memories, a local and a global
one). Our command does not need any memory, therefore the header
was set to 0x|00:00|.

	Operations (starting at byte 7): Here one single
byte, that stands for: opNOP = 0x|01|, do nothing, the idle
operation of the EV3.

	The second line shows the received data:

	Length of the message (bytes 0, 1), here 3 bytes.

	Message counter (bytes 2, 3): This fits the message counter
of the corresponding request.

	Return status (byte 4): For direct commands it may have the
following two values:

	DIRECT_REPLY = 0x|02|: the direct command was successfully operated.

	DIRECT_REPLY_ERROR = 0x|04|: the direct command ended with an error.

If we had set the global memory to a value larger than 0 (e.g. calling
send_direct_cmd() with a keyword argument
global_mem=1, we would have seen some additional data after the
return status.

Replace the protocol by ev3.WIFI and ev3.BLUETOOTH and start
the program again. The time gaps between request and reply will show
the communication speeds. USB is the fastest, then comes WIFI,
BLUETOOTH is the slowest. Compared with human communication, all three
of them are quite fast.

Tell your EV3 what to do

Direct commands allow to send instructions with arguments.

Changing LED colors

There are some light effects on the EV3 brick. You can change the
colors of the LEDs and this is done by operation opUI_Write with CMD
LED.

opUI_Write = 0x|82| with CMD LED = 0x|1B| needs one argument:

	PATTERN: GREEN = 0x|01|, RED = 0x|02|, etc.

Take an USB cable and connect your EV3 brick
with your computer. Replace the
MAC-address by the one of your EV3 brick, then
start the program.

import ev3_dc as ev3
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

ops = b''.join((
 ev3.opUI_Write, # operation
 ev3.LED, # CMD
 ev3.LED_RED_FLASH # PATTERN
))
my_ev3.send_direct_cmd(ops)

sleep(5)
ops = b''.join((
 ev3.opUI_Write,
 ev3.LED,
 ev3.LED_GREEN
))
my_ev3.send_direct_cmd(ops)

This program sends two direct commands with a timespan of 5
sec. between them. The first one changes the LED color to a red flashing,
the second sets the well known green color.

The output:

10:43:38.601015 Sent 0x|08:00|2A:00|00|00:00|82:1B:05|
10:43:38.616028 Recv 0x|03:00|2A:00|02|
10:43:43.620023 Sent 0x|08:00|2B:00|00|00:00|82:1B:01|
10:43:43.630105 Recv 0x|03:00|2B:00|02|

Some remarks:

	The default sync_mode of the USB protocol is SYNC. This is why
both direct commands were replied.

	EV3 increments the message counter. The first command got 0x|2A:00|,
which is the value 42, the second command got 0x|2B:00| (value 43).

	0x|82| is the bytecode of operation opUI_Write.

	0x|1B| is the bytecode of CMD LED.

	0x|05| is the bytecode of LED_RED_FLASH.

	0x|01| is the bytecode of LED_GREEN.

If we replace protocol=ev3.USB by protocol=ev3.BLUETOOTH, we get
this output:

10:44:47.266688 Sent 0x|08:00|2A:00|80|00:00|82:1B:05|
10:44:52.272881 Sent 0x|08:00|2B:00|80|00:00|82:1B:01|

The message type changed from 0x|00| (DIRECT_COMMAND_REPLY) to
0x|80| (DIRECT_COMMAND_NO_REPLY) and the EV3 brick indeed did not
reply. This happens because protocol BLUETOOTH defaults to
sync_mode STD.

Setting EV3’s brickname

You can change the name of your EV3 brick by sending a direct command.

opCom_Set = 0x|D4| with CMD SET_BRICKNAME = 0x|08| needs one argument:

	NAME: (DATA8) – First character in character string

Some more explanations of argument NAME will follow. The text above
is, what the LEGO documentation says.

The program:

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.WIFI, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

ops = b''.join((
 ev3.opCom_Set, # operation
 ev3.SET_BRICKNAME, # CMD
 ev3.LCS("myEV3") # NAME
))
my_ev3.send_direct_cmd(ops)

Direct commands are built as byte strings. Multiple operations can be
concatenated. Here a single operation is sent. The combination of
operation opCom_Set and CMD SET_BRICKNAME sets the brickname. This
command needs a single string argument and does not produce any
output. We let sync_mode be STD, which omits replies if the global
memory (space for return data) is unused.

The output of the program:

10:49:13.012039 Sent 0x|0E:00|2A:00|80|00:00|D4:08:84:6D:79:45:56:33:00|

Some remarks:

	0x|D4| is the bytecode of operation opCom_Set.

	0X|08| is the bytecode of CMD SET_BRICKNAME.

	0x|84| is the bytecode of the leading identification byte of
LCS() character strings (in binary notation, it is:
0b 1000 0100). If any argument is a string, it will be sent as an
LCS, which says a leading and a trailing byte must be added.

	0x|6D:79:45:56:33| is the ascii bytecode of the string myEV3.

	0x|00| terminates LCS character strings.

Maybe you’re not familiar with this vocabulary. Document EV3 Firmware
Developer Kit [https://www.lego.com/cdn/cs/set/assets/blt77bd61c3ac436ea3/LEGO_MINDSTORMS_EV3_Firmware_Developer_Kit.pdf]
will help you. Read the details about the leading identification byte
in section 3.4 Parameter encoding.

Starting programs

Direct commands allow to start programs, which normally is done by
pressing buttons of the EV3 device. A program is a file, that exists
in the filesystem of the EV3. We will start
/home/root/lms2012/apps/Motor Control/Motor Control.rbf. This needs
two operations:

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opFile,
 ev3.LOAD_IMAGE,
 ev3.LCX(1), # SLOT
 ev3.LCS('../apps/Motor Control/Motor Control.rbf'), # NAME
 ev3.LVX(0), # SIZE
 ev3.LVX(4), # IP*
 ev3.opProgram_Start,
 ev3.LCX(1), # SLOT
 ev3.LVX(0), # SIZE
 ev3.LVX(4), # IP*
 ev3.LCX(0) # DEBUG
))
my_ev3.send_direct_cmd(ops, local_mem=8)

The first operation is the loader [https://en.wikipedia.org/wiki/Loader_(computing)]. It places a
program into memory and prepares it for execution. The second operation starts the
program. The return values of the first operation are SIZE and IP*. We
use LVX() to write them to the local memory at
addresses 0 and 4. The second operation reads its arguments SIZE and
IP* from the local memory. It’s arguments SLOT and DEBUG are given as
constant values.

Paths can be absolute or relative. Relative paths, like the above one,
are relative to /home/root/lms2012/sys/. We don’t set verbosity and
the command does not use any global memory, therefore it sends the
direct command and ends silently. But the display of the EV3 device
will show, that the program has been started.

Playing Sound Files

Take an USB cable and connect your EV3 brick
with your computer. Replace the
MAC-address by the one of your EV3 brick, then
start the program.

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

ops = b''.join((
 ev3.opSound, # operation
 ev3.PLAY, # CMD
 ev3.LCX(100), # VOLUME
 ev3.LCS('./ui/DownloadSucces') # NAME
))
my_ev3.send_direct_cmd(ops)

The output:

10:20:05.004355 Sent 0x|1E:00|2A:00|00|00:00|94:02:81:64:84:2E:2F:75:69:2F:44:6F:77:6E:6C:6F:61:64:53:75:63:63:65:73:00|
10:20:05.022584 Recv 0x|03:00|2A:00|02|

opSound with CMD PLAY needs two arguments:

	volume in percent as an integer value [0 - 100]

	name of the sound file (without extension “.rsf”) as absolute
path, or relative to /home/root/lms2012/sys/

The default sync_mode of the USB protocol is SYNC. This is why
the direct command was replied.

Playing Sound Files repeatedly

As above, take an USB cable, connect your EV3 brick with your computer
and replace MAC-address by the one of your EV3 brick, then start
this program.

import ev3_dc as ev3
import time

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

ops = b''.join((
 ev3.opSound, # operation
 ev3.REPEAT, # CMD
 ev3.LCX(100), # VOLUME
 ev3.LCS('./ui/DownloadSucces') # NAME
))
my_ev3.send_direct_cmd(ops)

time.sleep(5)
ops = b''.join((
 ev3.opSound,
 ev3.BREAK
))
my_ev3.send_direct_cmd(ops)

This program sends two direct commands with a timespan of 5
sec. between them. The first one starts the repeated playing
of a sound file, the second stops the playing.

The output:

10:26:20.466604 Sent 0x|1E:00|2A:00|00|00:00|94:03:81:64:84:2E:2F:75:69:2F:44:6F:77:6E:6C:6F:61:64:53:75:63:63:65:73:00|
10:26:20.481941 Recv 0x|03:00|2A:00|02|
10:26:25.487598 Sent 0x|07:00|2B:00|00|00:00|94:00|
10:26:25.500652 Recv 0x|03:00|2B:00|02|

EV3 increments the message counter. The first command got 0x|2A:00|,
which is the value 42, the second command got 0x|2B:00| (value 43).

Playing Tones

We send a direct command, that plays a flourish in c, which consists
of four tones:

	c’ (262 Hz)

	e’ (330 Hz)

	g’ (392 Hz)

	c’’ (523 Hz)

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opSound, # operation
 ev3.TONE, # CMD
 ev3.LCX(1), # volume
 ev3.LCX(262), # frequency
 ev3.LCX(1000), # duration
 ev3.opSound_Ready, # operation
 ev3.opSound,
 ev3.TONE,
 ev3.LCX(1),
 ev3.LCX(330),
 ev3.LCX(1000),
 ev3.opSound_Ready,
 ev3.opSound,
 ev3.TONE,
 ev3.LCX(1),
 ev3.LCX(392),
 ev3.LCX(1000),
 ev3.opSound_Ready,
 ev3.opSound,
 ev3.TONE,
 ev3.LCX(2),
 ev3.LCX(523),
 ev3.LCX(2000)
))
my_ev3.send_direct_cmd(ops)

The single direct command consists of 7 operations. opSound_Ready
prevents interruption. Without it, only the last tone could be
heard. The duration is in milliseconds.

Drawing and Timers

Contolling time is an important aspect in real time programs. We have
seen how to wait until a tone ended and we waited in the python program
until we stopped the repeated playing of a sound file. The operation
set of the EV3 includes timer operations which allow to wait in the
execution of a direct command. This needs the following two operations:

opTimer_Wait = 0x|85| with two arguments:

	(Data32) TIME: Time to wait (in milliseconds)

	(Data32) TIMER: Variable used for timing

This operation writes a 4-bytes timestamp into the local or global memory.

opTimer_Ready = 0x|86| with one argument:

	(Data32) TIMER: Variable used for timing

This operation reads a timestamp and waits until the actual time reaches the value of this timestamp.

We test the timer operations with a program that draws a triangle. This needs operation opUI_Draw
with CMD LINE three times.

opUI_Draw = 0x|84| with CMD LINE = 0x|03| and the arguments:

	(Data8) COLOR: Specify either black or white, [0: White, 1: Black]

	(Data16) X0: Specify X start point, [0 - 177]

	(Data16) Y0: Specify Y start point, [0 - 127]

	(Data16) X1: Specify X end point

	(Data16) Y1: Specify Y end point

The program:

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opUI_Draw,
 ev3.TOPLINE,
 ev3.LCX(0), # ENABLE
 ev3.opUI_Draw,
 ev3.FILLWINDOW,
 ev3.LCX(0), # COLOR
 ev3.LCX(0), # Y0
 ev3.LCX(0), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE,
 ev3.opTimer_Wait,
 ev3.LCX(2000),
 ev3.LVX(0),
 ev3.opTimer_Ready,
 ev3.LVX(0),
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(2), # X0
 ev3.LCX(125), # Y0
 ev3.LCX(88), # X1
 ev3.LCX(2), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE,
 ev3.opTimer_Wait,
 ev3.LCX(1000),
 ev3.LVX(0),
 ev3.opTimer_Ready,
 ev3.LVX(0),
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(88), # X0
 ev3.LCX(2), # Y0
 ev3.LCX(175), # X1
 ev3.LCX(125), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE,
 ev3.opTimer_Wait,
 ev3.LCX(1000),
 ev3.LVX(0),
 ev3.opTimer_Ready,
 ev3.LVX(0),
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(175), # X0
 ev3.LCX(125), # Y0
 ev3.LCX(2), # X1
 ev3.LCX(125), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE
))
my_ev3.send_direct_cmd(ops, local_mem=4)

This program cleans the display, then waits for two seconds, draws a
line, waits for one second, draws another line, waits and finally
draws a third line. It needs 4 bytes of local memory, which are
multiple times written and red. opTimer_Wait writes a timestamp to
local memory address 0 and opTimer_Ready reads it from local memory
address 0.

Obviously the timing can be done in the local program or in the direct
command. We change the program:

import ev3_dc as ev3
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opUI_Draw,
 ev3.TOPLINE,
 ev3.LCX(0), # ENABLE
 ev3.opUI_Draw,
 ev3.FILLWINDOW,
 ev3.LCX(0), # COLOR
 ev3.LCX(0), # Y0
 ev3.LCX(0), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE
))
my_ev3.send_direct_cmd(ops)

sleep(2)
ops = b''.join((
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(2), # X0
 ev3.LCX(125), # Y0
 ev3.LCX(88), # X1
 ev3.LCX(2), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE
))
my_ev3.send_direct_cmd(ops)

sleep(1)
ops = b''.join((
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(88), # X0
 ev3.LCX(2), # Y0
 ev3.LCX(175), # X1
 ev3.LCX(125), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE
))
my_ev3.send_direct_cmd(ops)

sleep(1)
ops = b''.join((
 ev3.opUI_Draw,
 ev3.LINE,
 ev3.LCX(1), # COLOR
 ev3.LCX(175), # X0
 ev3.LCX(125), # Y0
 ev3.LCX(2), # X1
 ev3.LCX(125), # Y1
 ev3.opUI_Draw,
 ev3.UPDATE
))
my_ev3.send_direct_cmd(ops)

Both alternatives result in the same behaviour of the display but are
different. The first version needs less communication but blocks the
EV3 device for four seconds (until the direct command ends its
execution). The second version needs four direct commands but does not
block the EV3 brick. All its direct commands need a short execution
time and allow to send other direct commands in between.

Simulating Button presses

In this example, we shut down the EV3 brick by simulating button
presses. We use two operations:

opUI_Button = 0x|83| with CMD PRESS = 0x|05| needs one argument:

	BUTTON

	NO_BUTTON = 0x|00|

	UP_BUTTON = 0x|01|

	ENTER_BUTTON = 0x|02|

	DOWN_BUTTON = 0x|03|

	RIGHT_BUTTON = 0x|04|

	LEFT_BUTTON = 0x|05|

	BACK_BUTTON = 0x|06|

	ANY_BUTTON = 0x|07|

opUI_Button = 0x|83| with CMD WAIT_FOR_PRESS = 0x|03| needs no argument.

To prevent interruption, we need to wait until the initiated
operations are finished. This is done by the second operation.

The program:

import ev3_dc as ev3

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opUI_Button, # operation
 ev3.PRESS, # CMD
 ev3.BACK_BUTTON,
 ev3.opUI_Button, # operation
 ev3.WAIT_FOR_PRESS, # CMD
 ev3.opUI_Button,
 ev3.PRESS,
 ev3.RIGHT_BUTTON,
 ev3.opUI_Button,
 ev3.WAIT_FOR_PRESS,
 ev3.opUI_Button,
 ev3.PRESS,
 ev3.ENTER_BUTTON
))
my_ev3.send_direct_cmd(ops)

Reading data from EV3’s sensors

Direct commands allow to read data from your EV3 device.
The most important operation for reading data is:

opInput_Device = 0x|99| with CMD READY_RAW = 0x|1C|

Arguments

	(Data8) LAYER: Specify chain layer number [0-3]

	(Data8) NO: Port number

	(Data8) TYPE: Specify device type (0 = Don’t change type)

	(Data8) MODE: Device mode [0-7] (-1 = Don’t change mode)

	(Data8) VALUES: Number of return values

Returns

	(Data32) VALUE1: First value received from sensor in the
specified mode

There are two siblings, that read data a bit different:

	opInput_Device = 0x|99| with CMD READY_PCT = 0x|1B| reads
integer data in the range [0 - 100], that must be interpreted as a
percentage.

	opInput_Device = 0x|99| with CMD READY_SI = 0x|1D| reads floating point data.

Return data can be written to the local or global memory. Use function
LVX() to address the local memory and
GVX() to address the global memory (e.g. GVX(0)
addresses the first byte of the global memory).

Another operation, that may be important for sensors, resets the
sensor at a specific port. This sets the sensor to its initial state
and clears its counters.

opInput_Device = 0x|99| with CMD CLR_CHANGES = 0x|1A|

Arguments

	(Data8) LAYER: Specify chain layer number [0-3]

	(Data8) NO: Port number

Introspection

There is an operation, that asks for the type and mode of a sensor at a specified port.

opInput_Device = 0x|99| with CMD GET_TYPEMODE = 0x|05|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NO: port number

Returns

	(Data8) TYPE: device type

	(Data8) MODE: device mode

Please connect some sensors to your sensor ports and some motors to
your motor ports. Then connect your EV3 brick and your computer with
an USB cable. Replace MAC-address by the one of your EV3 brick.
The following program sends two direct commands, the first asks for
the sensors, the second for the motors.

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.USB, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

def create_ops(ports: tuple, motors=False):
 if motors:
 ports = tuple(ev3.port_motor_input(port) for port in ports)
 ops = b''
 for i in range(4):
 ops += b''.join((
 ev3.opInput_Device, # operation
 ev3.GET_TYPEMODE, # CMD
 ev3.LCX(0), # LAYER
 ports[i], # NO
 ev3.GVX(2*i), # TYPE (output)
 ev3.GVX(2*i + 1) # MODE (output)
))
 return ops

def print_table(port_names: tuple, answer: tuple):
 print('-'*20)
 print('port | type | mode |')
 print('-'*20)
 for i in range(4):
 print(
 ' {} |'.format(
 port_names[i]
),
 end=''
)
 if answer[2*i] == 126:
 print(' - | - |')
 else:
 print(
 ' {:3d} | {:3d} |'.format(
 answer[2*i],
 answer[2*i + 1]
)
)
 print('-'*20)
 print()

sensors
ports = (ev3.PORT_1, ev3.PORT_2, ev3.PORT_3, ev3.PORT_4)
ops = create_ops(ports)
reply = my_ev3.send_direct_cmd(ops, global_mem=8)
answer = struct.unpack('8B', reply)

print()
print('Sensor ports:')
print_table(
 ('1', '2', '3', '4'),
 answer
)

motors
ports = (ev3.PORT_A, ev3.PORT_B, ev3.PORT_C, ev3.PORT_D)
ops = create_ops(ports, motors=True)
reply = my_ev3.send_direct_cmd(ops, global_mem=8)
answer = struct.unpack('8B', reply)

print()
print('Motor ports:')
print_table(
 ('A', 'B', 'C', 'D'),
 answer
)

Some Remarks:

	Each operation opInput_Device with CMD GET_TYPEMODE answers
with two bytes of data, one byte for the type, another for the
mode.

	It’s the python program that decides, how to place the data into
the global memory. Every GVX() directs some
output data to an address of the global memory.

	reply is a byte string of 8 bytes length, answer is a tuple of
8 byte numbers.

	struct [https://docs.python.org/3/library/struct.html] is the tool of
choice to translate binary data into python data types.

	port_motor_input() allows to use the same motor
port constants for input and output.

	type 126 stands for no sensor connected.

The output:

09:25:12.400013 Sent 0x|1D:00|2A:00|00|08:00|99:05:00:00:60:61:99:05:00:01:62:63:99:05:00:02:64:65:99:05:00:03:66:67|
09:25:12.410124 Recv 0x|0B:00|2A:00|02|10:00:1D:00:21:00:7E:00|

Sensor ports:

port | type | mode |

 1 | 16 | 0 |
 2 | 29 | 0 |
 3 | 33 | 0 |
 4 | - | - |

09:25:12.411241 Sent 0x|1D:00|2B:00|00|08:00|99:05:00:10:60:61:99:05:00:11:62:63:99:05:00:12:64:65:99:05:00:13:66:67|
09:25:12.417945 Recv 0x|0B:00|2B:00|02|07:00:7E:00:08:00:07:00|

Motor ports:

port | type | mode |

 A | 7 | 0 |
 B | - | - |
 C | 8 | 0 |
 D | 7 | 0 |

Section 5 Device type list in EV3 Firmware Developer Kit [https://www.lego.com/cdn/cs/set/assets/blt77bd61c3ac436ea3/LEGO_MINDSTORMS_EV3_Firmware_Developer_Kit.pdf]
lists the sensor types and modes of the EV3 device and helps to
understand these numbers.

Touch mode of the Touch Sensor

We use operation opInput_Device to ask the touch sensor if it currently is touched.
Connect your touch sensor with port 1, take an USB-cable and connect
your computer with your EV3 brick, then run this program:

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.USB)
my_ev3.verbosity = 1

touch sensor at port 1
ops = b''.join((
 ev3.opInput_Device, # operation
 ev3.READY_SI, # CMD
 ev3.LCX(0), # LAYER
 ev3.PORT_1, # NO
 ev3.LCX(16), # TYPE (EV3-Touch)
 ev3.LCX(0), # MODE (Touch)
 ev3.LCX(1), # VALUES
 ev3.GVX(0) # VALUE1 (output)
))
reply = my_ev3.send_direct_cmd(ops, global_mem=4)
touched = struct.unpack('<f', reply)[0]

print()
print(
 'The sensor is',
 ('not touched', 'touched')[int(touched)]
)

Some remarks:

	The single return value of opInput_Device with CMD READY_SI is
a floating point number of 4 bytes length in little endian [https://en.wikipedia.org/wiki/Endianness] notation.

	With GVX(0) we write it to the global memory address 0. This says, it takes
the first 4 bytes of the global memory.

	Method send_direct_cmd() skips the leading
bytes of the reply and returns the global memory only.

	struct [https://docs.python.org/3/library/struct.html] is the
tool of choice to translate the packed binary little endian data
into python data format. struct.unpack() returns a tuple,
from where we pick the first (and only) item.

The output:

09:35:17.516913 Sent 0x|0D:00|2A:00|00|04:00|99:1D:00:00:10:00:01:60|
09:35:17.524934 Recv 0x|07:00|2A:00|02|00:00:80:3F|

The sensor is touched

0x|00:00:80:3F| is the little endian notation of the floating point
number 1.0.

Bump mode of the Touch Sensor

The bump mode of the touch sensor counts the number of touches since the
last reset. The following program resets the counter of the touch sensor, waits
for five seconds, then asks about the number of touches.

If you own a WiFi dongle and both, you computer and your EV3 brick are
connected to the WiFi, then you can start the following program. If
not, replace the protocol by USB or by BLUETOOTH.

import ev3_dc as ev3
import struct
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.WIFI)
my_ev3.verbosity = 1

clear port 1
ops = b''.join((
 ev3.opInput_Device, # operation
 ev3.CLR_CHANGES, # CMD
 ev3.LCX(0), # LAYER
 ev3.PORT_1 # NO
))
my_ev3.send_direct_cmd(ops)

print('\ncounting starts now ...\n')
sleep(5)

touch sensor at port 1
ops = b''.join((
 ev3.opInput_Device, # operation
 ev3.READY_SI, # CMD
 ev3.LCX(0), # LAYER
 ev3.PORT_1, # NO
 ev3.LCX(16), # TYPE (EV3-Touch)
 ev3.LCX(1), # MODE (Bump)
 ev3.LCX(1), # VALUES
 ev3.GVX(0) # VALUE1 (output)
))
reply = my_ev3.send_direct_cmd(ops, global_mem=4)
touched = struct.unpack('<f', reply)[0]

print()
print(
 'The sensor was touched',
 int(touched),
 'times'
)

The output:

09:37:04.402440 Sent 0x|09:00|2A:00|80|00:00|99:1A:00:00|

counting starts now ...

09:37:09.418332 Sent 0x|0D:00|2B:00|00|04:00|99:1D:00:00:10:01:01:60|
09:37:09.435870 Recv 0x|07:00|2B:00|02|00:00:40:41|

The sensor was touched 12 times

If you compare the two direct commands, you will realize some differences:

	The length is different.

	The message counter has been incremented.

	The message types are different, the first one is
DIRECT_COMMAND_NO_REPLY, the second one is
DIRECT_COMMAND_REPLY. Consequently, the first command does not get
a reply. If you use protocol USB, this will change and all direct
commands will be replied.

	The header is different. The first direct command does not use any global or local memory,
the second needs 4 bytes of global memory.

	The operations are different, which is not surprising.

Measure distances

Use operation opInput_Device to read data of the infrared sensor.
Connect your EV3 infrared sensor with port 3, take an USB-cable and
connect your computer with your EV3 brick, then run this program:

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.USB)
my_ev3.verbosity = 1

infrared sensor at port 3
ops = b''.join((
 ev3.opInput_Device,
 ev3.READY_SI,
 ev3.LCX(0), # LAYER
 ev3.PORT_3, # NO
 ev3.LCX(33), # TYPE - EV3-IR
 ev3.LCX(0), # MODE - Proximity
 ev3.LCX(1), # VALUES
 ev3.GVX(0) # VALUE1
))
reply = my_ev3.send_direct_cmd(ops, global_mem=4)
distance = struct.unpack('<f', reply)[0]

print('\nSomething detected at a distance of {:2.0f} cm.'.format(distance))

The output:

09:45:34.223216 Sent 0x|0E:00|2A:00|00|04:00|99:1D:00:02:81:21:00:01:60|
09:45:34.229976 Recv 0x|07:00|2A:00|02|00:00:D0:41|

Something detected at a distance of 26 cm.

Seeker and Beacon

Combining the EV3 infrared sensor and the EV3 beacon identifies
the position of one to four beacons. A beacon send signals on one of four
channels and the infrared sensor measures its own position relative to
the position the beacon.

Connect your EV3 infrared sensor with port 3, take an USB-cable and
connect your computer with your EV3 brick, select a channel, place it
in front of the infrared sensor, then run this program:

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.USB)
my_ev3.verbosity = 1

ops_read = b''.join((
 ev3.opInput_Device, # operation
 ev3.READY_RAW, # CMD
 ev3.LCX(0), # LAYER
 ev3.PORT_3, # NO
 ev3.LCX(33), # TYPE - IR
 ev3.LCX(1), # MODE - Seeker
 ev3.LCX(8), # VALUES
 ev3.GVX(0), # VALUE1 - heading channel 1
 ev3.GVX(4), # VALUE2 - proximity channel 1
 ev3.GVX(8), # VALUE3 - heading channel 2
 ev3.GVX(12), # VALUE4 - proximity channel 2
 ev3.GVX(16), # VALUE5 - heading channel 3
 ev3.GVX(20), # VALUE6 - proximity channel 3
 ev3.GVX(24), # VALUE7 - heading channel 4
 ev3.GVX(28) # VALUE8 - proximity channel 4
))
reply = my_ev3.send_direct_cmd(ops_read, global_mem=32)
answer = struct.unpack('<8i', reply)

for i in range(4):
 # proximity (little endian) == 0x|00:00:00:80| means no signal
 if answer[2*i + 1] == -2147483648:
 continue

 print(
 '\nchannel: {}, heading: {}, proximity: {}'.format(
 i + 1,
 answer[2*i],
 answer[2*i + 1]
)
)

Some remarks:

	Type 33 (IR) with Mode 1 (Seeker) writes 8 data values, heading
and proximity of four channels.

	In case of CMD READY_RAW, these are 8 integer values, each of
four bytes length. This needs 32 bytes of global memory.

	struct [https://docs.python.org/3/library/struct.html]
translates the packed binary little endian data of the global memory
and returns a tuple of eight integer values.

	A proximity of 0x|00:00:00:80| (little endian, the heighest bit is
1, all others are 0) has a special meaning. It says, on this
channel the infrared sensor did not receive a signal. Interpeted
as a signed litlle endian integer, 0x|00:00:00:80| becomes
\(- 2,147,483,648 = - 2^{31}\), the smallest of all values.

	Using a single beacon means, three channels without signal, one
channel with. Channels without signal are sorted out.

The output:

10:05:43.514714 Sent 0x|15:00|2A:00|00|20:00|99:1C:00:02:81:21:01:08:60:64:68:6C:70:74:78:7C|
10:05:44.629441 Recv 0x|23:00|2A:00|02|00:00:00:00:00:00:00:80:EB:FF:FF:FF:1B:00:00:00:00:00:00:00:00:00:00:80:00:00:00:00:00:00:00:80|

channel: 2, heading: -21, proximity: 27

Some remarks:

	Heading is in the range [-25 - 25], negative values stand for the
left, 0 for straight, positive for the right side.

	Proximity is in the range [0 - 100] and measures in cm.

	In my case, the beacon was far left, 27 cm apart and sended on
channel 2.

Reading the color

We use operation opInput_Device to read data of the color sensor.
Connect your color sensor with port 2, take an USB-cable and connect
your computer with your EV3 brick, then run this program:

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.USB)
my_ev3.verbosity = 1

color sensor at port 2
ops = b''.join((
 ev3.opInput_Device, # operation
 ev3.READY_RAW, # CMD
 ev3.LCX(0), # LAYER
 ev3.PORT_2, # NO
 ev3.LCX(29), # TYPE (EV3-Color)
 ev3.LCX(2), # MODE (Color)
 ev3.LCX(1), # VALUES
 ev3.GVX(0) # VALUE1 (output)
))
reply = my_ev3.send_direct_cmd(ops, global_mem=4)
color_nr = struct.unpack('<i', reply)[0]

color_str = (
 'none',
 'black',
 'blue',
 'green',
 'yellow',
 'red',
 'white',
 'brown'
)[color_nr]
print('\nThis color is', color_str)

The output:

09:49:32.461804 Sent 0x|0D:00|2A:00|00|04:00|99:1C:00:01:1D:02:01:60|
09:49:32.467874 Recv 0x|07:00|2A:00|02|03:00:00:00|

This color is green

There are some more color sensor modes, maybe you like to test these:

	Mode 0 (Reflected) - switches on the red light and measures the inensity
of the reflection, which is dependent from distance, color and the reflection factor
of the surface.

	Mode 1 (Ambient) - switches on the blue light (why?) and measures the intensity of
the ambient light.

	Mode 4 (RGB-Raw) - switches on red, green and blue light and measures the intensity of
the reflected light.

Reading the current position of motors

If two large motors are connected with ports A and D, you can
start this program:

import ev3_dc as ev3
import struct

my_ev3 = ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')

ops = b''.join((
 ev3.opInput_Device,
 ev3.READY_SI,
 ev3.LCX(0), # LAYER
 ev3.port_motor_input(ev3.PORT_A), # NO
 ev3.LCX(7), # TYPE (EV3-Large-Motor)
 ev3.LCX(0), # MODE (Degree)
 ev3.LCX(1), # VALUES
 ev3.GVX(0), # VALUE1
 ev3.opInput_Device,
 ev3.READY_RAW,
 ev3.LCX(0), # LAYER
 ev3.port_motor_input(ev3.PORT_D), # NO
 ev3.LCX(7), # TYPE
 ev3.LCX(0), # MODE
 ev3.LCX(1), # VALUES
 ev3.GVX(4) # VALUE1
))
reply = my_ev3.send_direct_cmd(ops, global_mem=8)
pos_a, pos_d = struct.unpack('<fi', reply)
print(
 "positions in degrees (ports A and D): {} and {}".format(
 pos_a,
 pos_d
)
)

Section 5 Device type list in EV3 Firmware Developer Kit lists
the sensors of the EV3 device. If you want to read the positions
of large motors in degrees, you will set TYPE=7 and MODE=0. We read
one value from each.

For demonstration pupose only, we use two different CMDs, READY_SI
and READY_RAW. Both of them read the current position of a motor,
but the first writes floating point data, the second integer data. We
use 8 bytes of global memory. The first 4 bytes hold the position of
motor A as a floating point number. The next 4 bytes hold the position
of motor D as an integer. Module struct [https://docs.python.org/3/library/struct.html] is the tool of
choice to translate the packed binary little endian data into a float
and an int.

Moving motors

A number of operations is used for motor movements.

Exact movements, blocking the EV3 brick

Exact and smooth movements of a mootor are our first theme. We start
with using four operations:

opOutput_Reset = 0x|A2|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

The EV3 brick tracks exact movements and does some corrections of
overshooting or manual movements. opOutput_Reset resets these
tracking informations. It does not clear the counter.

opOutput_Step_Speed = 0x|AE|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

	(Data8) SPEED: direction (sign) and speed of movement [-100, 100]

	(Data32) STEP1: length of acceleration

	(Data32) STEP2: length of constant speed movement

	(Data32) STEP3: length of deceleration

	(Data8) BRAKE: flag if ending with floating motor or active
break [0: Float, 1: Break]

This operation defines a smooth and exact movement of one or
multiple motors. Dependent from the mode, STEP1, STEP2 and STEP3 are
in degrees (default) or rotations.

opOutput_Ready = 0x|AA|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

Starts the movement and waits until the movement has finished.

opOutput_Stop = 0x|A3|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

	(Data8) BRAKE: flag if ending with floating motor or active
break [0: Float, 1: Break]

Stops the current movement of one or multiple motors.

Connect your EV3 medium motor with port B, connect your computer via
Bluetooth with your EV3 brick, replace MAC-address with the one of
your EV3 brick, then run this program:

import ev3_dc as ev3
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

jukebox = ev3.Jukebox(ev3_obj=my_ev3)
jukebox.song(ev3.FRERE_JACQUES).start()

def reset():
 ops = b''.join((
 ev3.opOutput_Reset,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
))
 my_ev3.send_direct_cmd(ops, sync_mode=ev3.SYNC)

def step_speed(speed: int):
 ops_step_speed = b''.join((
 ev3.opOutput_Step_Speed,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(speed), # SPEED
 ev3.LCX(15), # STEP1
 ev3.LCX(60), # STEP2
 ev3.LCX(15), # STEP3
 ev3.LCX(1) # BRAKE - yes
))
 ops_ready = b''.join((
 ev3.opOutput_Ready,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
))
 my_ev3.send_direct_cmd(ops_step_speed + ops_ready, sync_mode=ev3.SYNC)

def stop():
 ops = b''.join((
 ev3.opOutput_Stop,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(0) # BRAKE - no
))
 my_ev3.send_direct_cmd(ops)

speed = 5

reset()
for i in range(5):
 step_speed(speed)
 step_speed(-speed)

sleep(.2)
stop()

Some remarks:

	Function reset() resets the tracking information of the
motor at port B.

	Function step_speed() does a 90 ° smooth movement of the
motor at port B. Dependent from the sign of SPEED the movement is
forwards or backwards. The three numbers STEP1, STEP2 and
STEP3 define the lengths of the acceleration, the constant speed
and the deceleration phase, all of them in degrees. The movement
ends with an active break, which holds the motor in a defined
position. It waits until the movement has finished.

	Function stop() releases the brake. This is done 0.2 sec.
after the last movement has finished.

	There are 10 slow and smooth movements of the motor, 5 times
forwards and backwards. If you fix an infrared sensor on top of
the shaft, this looks like headshaking. Changing the speed will
change the character of the headshaking.

	Setting sync_mode=SYNC allows to get the reply just when the
movement has finished.

	The program plays the song Frère Jacques parallel to the motor
movement.

	Using two classes EV3 and Jukebox is not necessary. Jukebox
as a subclass of EV3 would have done the job alone. But this
example demonstrates, how specialized subclasses of EV3 can
handle specific tasks, like Jukebox handles sound. And multiple
subclasses of EV3 can work together.

The output:

11:52:26.168681 Sent 0x|08:00|2A:00|00|00:00|A2:00:02|
11:52:26.247070 Recv 0x|03:00|2A:00|02|
11:52:26.248399 Sent 0x|11:00|2D:00|00|00:00|AE:00:02:05:0F:81:3C:0F:01:AA:00:02|
11:52:27.402000 Recv 0x|03:00|2D:00|02|
11:52:27.403093 Sent 0x|11:00|2F:00|00|00:00|AE:00:02:3B:0F:81:3C:0F:01:AA:00:02|
11:52:28.578030 Recv 0x|03:00|2F:00|02|
11:52:28.578578 Sent 0x|11:00|30:00|00|00:00|AE:00:02:05:0F:81:3C:0F:01:AA:00:02|
11:52:29.735028 Recv 0x|03:00|30:00|02|
11:52:29.736302 Sent 0x|11:00|33:00|00|00:00|AE:00:02:3B:0F:81:3C:0F:01:AA:00:02|
11:52:30.929957 Recv 0x|03:00|33:00|02|
11:52:30.930941 Sent 0x|11:00|35:00|00|00:00|AE:00:02:05:0F:81:3C:0F:01:AA:00:02|
11:52:32.089839 Recv 0x|03:00|35:00|02|
11:52:32.091088 Sent 0x|11:00|38:00|00|00:00|AE:00:02:3B:0F:81:3C:0F:01:AA:00:02|
11:52:33.220884 Recv 0x|03:00|38:00|02|
11:52:33.221437 Sent 0x|11:00|39:00|00|00:00|AE:00:02:05:0F:81:3C:0F:01:AA:00:02|
11:52:34.366040 Recv 0x|03:00|39:00|02|
11:52:34.367271 Sent 0x|11:00|3C:00|00|00:00|AE:00:02:3B:0F:81:3C:0F:01:AA:00:02|
11:52:35.536879 Recv 0x|03:00|3C:00|02|
11:52:35.537949 Sent 0x|11:00|3E:00|00|00:00|AE:00:02:05:0F:81:3C:0F:01:AA:00:02|
11:52:36.735035 Recv 0x|03:00|3E:00|02|
11:52:36.735600 Sent 0x|11:00|3F:00|00|00:00|AE:00:02:3B:0F:81:3C:0F:01:AA:00:02|
11:52:37.870978 Recv 0x|03:00|3F:00|02|
11:52:38.071796 Sent 0x|09:00|43:00|80|00:00|A3:00:02:00|

The movement of the motor is the expected, but the song is not! The
movements last more than a second each and for this timespan, the EV3
brick is blocked because operation opOutput_Ready lets the EV3 brick
wait. If you look at the message counters, you find some gaps, where
direct commands of the sond were sent.

What we heave learned: If the timing is done in the direct command,
this limits parallel execution.

Exact Movements, not blocking

We modify the program and replace opOutput_Ready by opOutput_Start.
While the movement takes place, we ask frequently if it still is
in progress or has finished (done by opOutput_Test). This means more
data traffic, but none of the requests will block the EV3 brick. We
use these new operations:

opOutput_Start = 0x|A6|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

Starts the movement and does not wait until the movement has finished.

opOutput_Test = 0x|A9|

Arguments

	(Data8) LAYER: chain layer number

	(Data8) NOS: port number (or a combination of port numbers)

Returns

	(Data8) BUSY: flag if motor is busy [0 = Ready, 1 = Busy]

Tests if a motor is currently busy.

Connect your EV3 medium motor with port B, connect your computer via
Bluetooth with your EV3 brick, replace MAC-address with the one of
your EV3 brick, then run this program:

import ev3_dc as ev3
import struct
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

jukebox = ev3.Jukebox(ev3_obj=my_ev3)
jukebox.song(ev3.FRERE_JACQUES).start()

def reset():
 ops = b''.join((
 ev3.opOutput_Reset,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
))
 my_ev3.send_direct_cmd(ops, sync_mode=ev3.SYNC)

def step_speed(speed: int):
 ops_step_speed = b''.join((
 ev3.opOutput_Step_Speed,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(speed), # SPEED
 ev3.LCX(15), # STEP1
 ev3.LCX(60), # STEP2
 ev3.LCX(15), # STEP3
 ev3.LCX(1) # BRAKE - yes
))
 ops_start = b''.join((
 ev3.opOutput_Start,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
))
 my_ev3.send_direct_cmd(ops_step_speed + ops_start)

def test():
 ops = b''.join((
 ev3.opOutput_Test,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.GVX(0) # BUSY
))
 reply = my_ev3.send_direct_cmd(ops, global_mem=4)
 return struct.unpack('<i', reply)[0]

def stop():
 ops = b''.join((
 ev3.opOutput_Stop,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(0) # BRAKE - no
))
 my_ev3.send_direct_cmd(ops)

speed = 5

reset()
for i in range(5):
 step_speed(speed)
 sleep(.2)
 while test():
 sleep(.2)

 step_speed(-speed)
 sleep(.2)
 while test():
 sleep(.2)

sleep(.2)
stop()

Some remarks:

	opOutput_Ready has been replaced by opOutput_Start. This
starts the movement, but does not wait for its end.

	Instead of waiting, this program uses opOutput_Test to ask
frequently, if the movement is still in progress.

	If still your song is not played correctly, use protocols USB or
WiFi instead of Bluetooth, because these are faster and speed
helps to prevent conflicts.

The output:

12:21:08.851739 Sent 0x|08:00|2A:00|00|00:00|A2:00:02|
12:21:08.903092 Recv 0x|03:00|2A:00|02|
12:21:08.904440 Sent 0x|11:00|2D:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:21:09.105336 Sent 0x|09:00|2E:00|00|01:00|A9:00:02:60|
12:21:09.174974 Recv 0x|04:00|2E:00|02|01|
12:21:09.375951 Sent 0x|09:00|2F:00|00|01:00|A9:00:02:60|
12:21:09.444917 Recv 0x|04:00|2F:00|02|01|
12:21:09.645735 Sent 0x|09:00|31:00|00|01:00|A9:00:02:60|
12:21:09.715081 Recv 0x|04:00|31:00|02|01|
12:21:09.916029 Sent 0x|09:00|32:00|00|01:00|A9:00:02:60|
12:21:09.991093 Recv 0x|04:00|32:00|02|01|
12:21:10.191946 Sent 0x|09:00|34:00|00|01:00|A9:00:02:60|
12:21:10.262916 Recv 0x|04:00|34:00|02|00|
12:21:10.263476 Sent 0x|11:00|35:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:21:10.464500 Sent 0x|09:00|36:00|00|01:00|A9:00:02:60|
12:21:10.535111 Recv 0x|04:00|36:00|02|01|
12:21:10.736109 Sent 0x|09:00|38:00|00|01:00|A9:00:02:60|
12:21:10.777892 Recv 0x|04:00|38:00|02|01|
12:21:10.978716 Sent 0x|09:00|39:00|00|01:00|A9:00:02:60|
12:21:11.044970 Recv 0x|04:00|39:00|02|01|
12:21:11.245923 Sent 0x|09:00|3A:00|00|01:00|A9:00:02:60|
12:21:11.303016 Recv 0x|04:00|3A:00|02|01|
12:21:11.504236 Sent 0x|09:00|3D:00|00|01:00|A9:00:02:60|
12:21:11.575097 Recv 0x|04:00|3D:00|02|00|
12:21:11.575639 Sent 0x|11:00|3E:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:21:11.776573 Sent 0x|09:00|3F:00|00|01:00|A9:00:02:60|
12:21:11.842046 Recv 0x|04:00|3F:00|02|01|
12:21:12.043106 Sent 0x|09:00|41:00|00|01:00|A9:00:02:60|
12:21:12.112103 Recv 0x|04:00|41:00|02|01|
12:21:12.313026 Sent 0x|09:00|42:00|00|01:00|A9:00:02:60|
12:21:12.375051 Recv 0x|04:00|42:00|02|01|
12:21:12.575968 Sent 0x|09:00|44:00|00|01:00|A9:00:02:60|
12:21:12.637077 Recv 0x|04:00|44:00|02|01|
12:21:12.838115 Sent 0x|09:00|45:00|00|01:00|A9:00:02:60|
12:21:12.908110 Recv 0x|04:00|45:00|02|00|
12:21:12.908696 Sent 0x|11:00|46:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:21:13.109496 Sent 0x|09:00|48:00|00|01:00|A9:00:02:60|
12:21:13.121873 Recv 0x|04:00|48:00|02|01|
12:21:13.322848 Sent 0x|09:00|49:00|00|01:00|A9:00:02:60|
12:21:13.402117 Recv 0x|04:00|49:00|02|01|
12:21:13.603152 Sent 0x|09:00|4A:00|00|01:00|A9:00:02:60|
12:21:13.657882 Recv 0x|04:00|4A:00|02|01|
12:21:13.858904 Sent 0x|09:00|4D:00|00|01:00|A9:00:02:60|
12:21:13.899888 Recv 0x|04:00|4D:00|02|01|
12:21:14.100762 Sent 0x|09:00|4E:00|00|01:00|A9:00:02:60|
12:21:14.144913 Recv 0x|04:00|4E:00|02|00|
12:21:14.145297 Sent 0x|11:00|4F:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:21:14.346331 Sent 0x|09:00|51:00|00|01:00|A9:00:02:60|
12:21:14.389892 Recv 0x|04:00|51:00|02|01|
12:21:14.590822 Sent 0x|09:00|52:00|00|01:00|A9:00:02:60|
12:21:14.657997 Recv 0x|04:00|52:00|02|01|
12:21:14.858864 Sent 0x|09:00|54:00|00|01:00|A9:00:02:60|
12:21:14.944139 Recv 0x|04:00|54:00|02|01|
12:21:15.145073 Sent 0x|09:00|55:00|00|01:00|A9:00:02:60|
12:21:15.206087 Recv 0x|04:00|55:00|02|01|
12:21:15.407067 Sent 0x|09:00|56:00|00|01:00|A9:00:02:60|
12:21:15.476913 Recv 0x|04:00|56:00|02|00|
12:21:15.477296 Sent 0x|11:00|57:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:21:15.678152 Sent 0x|09:00|58:00|00|01:00|A9:00:02:60|
12:21:15.746237 Recv 0x|04:00|58:00|02|01|
12:21:15.947113 Sent 0x|09:00|59:00|00|01:00|A9:00:02:60|
12:21:16.008946 Recv 0x|04:00|59:00|02|01|
12:21:16.209772 Sent 0x|09:00|5C:00|00|01:00|A9:00:02:60|
12:21:16.286122 Recv 0x|04:00|5C:00|02|01|
12:21:16.488816 Sent 0x|09:00|5D:00|00|01:00|A9:00:02:60|
12:21:16.611171 Recv 0x|04:00|5D:00|02|01|
12:21:16.812098 Sent 0x|09:00|5F:00|00|01:00|A9:00:02:60|
12:21:16.895091 Recv 0x|04:00|5F:00|02|00|
12:21:16.895637 Sent 0x|11:00|60:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:21:17.096654 Sent 0x|09:00|61:00|00|01:00|A9:00:02:60|
12:21:17.138906 Recv 0x|04:00|61:00|02|01|
12:21:17.339764 Sent 0x|09:00|63:00|00|01:00|A9:00:02:60|
12:21:17.400990 Recv 0x|04:00|63:00|02|01|
12:21:17.601883 Sent 0x|09:00|64:00|00|01:00|A9:00:02:60|
12:21:17.638926 Recv 0x|04:00|64:00|02|01|
12:21:17.839940 Sent 0x|09:00|65:00|00|01:00|A9:00:02:60|
12:21:17.910139 Recv 0x|04:00|65:00|02|01|
12:21:18.111050 Sent 0x|09:00|66:00|00|01:00|A9:00:02:60|
12:21:18.176911 Recv 0x|04:00|66:00|02|00|
12:21:18.177386 Sent 0x|11:00|67:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:21:18.378438 Sent 0x|09:00|68:00|00|01:00|A9:00:02:60|
12:21:18.454102 Recv 0x|04:00|68:00|02|01|
12:21:18.655531 Sent 0x|09:00|6B:00|00|01:00|A9:00:02:60|
12:21:18.699933 Recv 0x|04:00|6B:00|02|01|
12:21:18.900855 Sent 0x|09:00|6C:00|00|01:00|A9:00:02:60|
12:21:18.956985 Recv 0x|04:00|6C:00|02|01|
12:21:19.158315 Sent 0x|09:00|6F:00|00|01:00|A9:00:02:60|
12:21:19.205918 Recv 0x|04:00|6F:00|02|01|
12:21:19.406850 Sent 0x|09:00|71:00|00|01:00|A9:00:02:60|
12:21:19.455956 Recv 0x|04:00|71:00|02|00|
12:21:19.456500 Sent 0x|11:00|72:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:21:19.657513 Sent 0x|09:00|73:00|00|01:00|A9:00:02:60|
12:21:19.722027 Recv 0x|04:00|73:00|02|01|
12:21:19.923390 Sent 0x|09:00|75:00|00|01:00|A9:00:02:60|
12:21:19.961935 Recv 0x|04:00|75:00|02|01|
12:21:20.162824 Sent 0x|09:00|76:00|00|01:00|A9:00:02:60|
12:21:20.234139 Recv 0x|04:00|76:00|02|01|
12:21:20.435034 Sent 0x|09:00|78:00|00|01:00|A9:00:02:60|
12:21:20.480964 Recv 0x|04:00|78:00|02|01|
12:21:20.681819 Sent 0x|09:00|79:00|00|01:00|A9:00:02:60|
12:21:20.735111 Recv 0x|04:00|79:00|02|00|
12:21:20.735661 Sent 0x|11:00|7A:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:21:20.936434 Sent 0x|09:00|7D:00|00|01:00|A9:00:02:60|
12:21:20.985048 Recv 0x|04:00|7D:00|02|01|
12:21:21.185991 Sent 0x|09:00|7E:00|00|01:00|A9:00:02:60|
12:21:21.255167 Recv 0x|04:00|7E:00|02|01|
12:21:21.456068 Sent 0x|09:00|80:00|00|01:00|A9:00:02:60|
12:21:21.519136 Recv 0x|04:00|80:00|02|01|
12:21:21.720515 Sent 0x|09:00|82:00|00|01:00|A9:00:02:60|
12:21:21.780126 Recv 0x|04:00|82:00|02|01|
12:21:21.981291 Sent 0x|09:00|84:00|00|01:00|A9:00:02:60|
12:21:22.033996 Recv 0x|04:00|84:00|02|00|
12:21:22.235006 Sent 0x|09:00|86:00|80|00:00|A3:00:02:00|

Some remarks:

	Much more data traffic, but smooth and correct execution of
movements, tones and LED lights.

	All these direct commands block the EV3 brick only for a very short
timespan, short enough to be not recognized.

	As before, the message counters show gaps, where the direct
commands of the song have been sent. But now, they were sent with
a correct timing.

You can easily imagine, how adding some more motors or sensors will
complicate the code. Therefore it’s good practice to separate the
tasks. Here the song has been separated as a thread task [https://thread-task.readthedocs.io/en/latest/] object and we didn’t
care about its internals.

Exact Movements as a Thread Task

We modify this program once more and create a thread task [https://thread-task.readthedocs.io/en/latest/] object for both, the
motor movement and the song, which can be started and
stopped. Encapsulating activities into thread task objects helps to
code applications of more and more parallel actions.

Connect your EV3 medium motor with port B, connect your computer via
Bluetooth with your EV3 brick, replace MAC-address with the one of your
EV3 brick, then run this program:

import ev3_dc as ev3
import struct
from thread_task import Task, Periodic, Repeated, Sleep
from time import sleep

my_ev3 = ev3.EV3(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')
my_ev3.verbosity = 1

jukebox = ev3.Jukebox(ev3_obj=my_ev3)

def reset():
 my_ev3.send_direct_cmd(
 b''.join((
 ev3.opOutput_Reset,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
)),
 sync_mode=ev3.SYNC
)

def step_speed(speed: int):
 my_ev3.send_direct_cmd(
 b''.join((
 ev3.opOutput_Step_Speed,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(speed), # SPEED
 ev3.LCX(15), # STEP1
 ev3.LCX(60), # STEP2
 ev3.LCX(15), # STEP3
 ev3.LCX(1), # BRAKE - yes
 ev3.opOutput_Start,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B) # NOS
))
)

def test():
 ops = b''.join((
 ev3.opOutput_Test,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.GVX(0) # BUSY
))
 reply = my_ev3.send_direct_cmd(ops, global_mem=1)
 busy = struct.unpack('<b', reply)[0]
 return False if busy else True

def stop():
 my_ev3.send_direct_cmd(
 b''.join((
 ev3.opOutput_Stop,
 ev3.LCX(0), # LAYER
 ev3.LCX(ev3.PORT_B), # NOS
 ev3.LCX(0) # BRAKE - no
))
)

speed = 5

t_song = jukebox.song(ev3.FRERE_JACQUES)

t_forwards = (
 Task(step_speed, args=(speed,), duration=.2) +
 Periodic(.2, test)
)
t_forwards.action_stop = stop

t_backwards = (
 Task(step_speed, args=(-speed,), duration=.2) +
 Periodic(.2, test)
)

t = (
 Task(t_song.start) +
 Task(reset) +
 Repeated(
 t_forwards + t_backwards,
 num=5
) +
 Sleep(.2) +
 Task(stop)
)

t.start()

sleep(8)
t.stop()

Some remarks:

	periodic ends, when its action returns True. This is why function
test() returns the opposite of the expected.

	Nearly all of the program is about creating t as a thread task
object. Its execution is only the few lines at the end. You can
easily imagine to hide the creation behind the public API of a
class.

	The parallel execution of motor movements and playing a song is handled inside of t.

	Stopping is quite easy. The logic, how to stop the activities is
hidden insite the thread task.

	This thread task is not perfect because its continuation logic is not proper coded.

The output:

12:48:40.569302 Sent 0x|08:00|2A:00|00|00:00|A2:00:02|
12:48:40.648679 Recv 0x|03:00|2A:00|02|
12:48:40.649948 Sent 0x|11:00|2D:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:48:40.849774 Sent 0x|09:00|2E:00|00|01:00|A9:00:02:60|
12:48:40.896519 Recv 0x|04:00|2E:00|02|01|
12:48:41.050036 Sent 0x|09:00|2F:00|00|01:00|A9:00:02:60|
12:48:41.098628 Recv 0x|04:00|2F:00|02|01|
12:48:41.250406 Sent 0x|09:00|31:00|00|01:00|A9:00:02:60|
12:48:41.318686 Recv 0x|04:00|31:00|02|01|
12:48:41.450778 Sent 0x|09:00|32:00|00|01:00|A9:00:02:60|
12:48:41.494671 Recv 0x|04:00|32:00|02|01|
12:48:41.651188 Sent 0x|09:00|33:00|00|01:00|A9:00:02:60|
12:48:41.703649 Recv 0x|04:00|33:00|02|01|
12:48:41.851603 Sent 0x|09:00|35:00|00|01:00|A9:00:02:60|
12:48:41.943683 Recv 0x|04:00|35:00|02|00|
12:48:41.944486 Sent 0x|11:00|36:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:48:42.144719 Sent 0x|09:00|37:00|00|01:00|A9:00:02:60|
12:48:42.211513 Recv 0x|04:00|37:00|02|01|
12:48:42.344999 Sent 0x|09:00|38:00|00|01:00|A9:00:02:60|
12:48:42.385481 Recv 0x|04:00|38:00|02|01|
12:48:42.545455 Sent 0x|09:00|3A:00|00|01:00|A9:00:02:60|
12:48:42.598677 Recv 0x|04:00|3A:00|02|01|
12:48:42.745691 Sent 0x|09:00|3B:00|00|01:00|A9:00:02:60|
12:48:42.799659 Recv 0x|04:00|3B:00|02|01|
12:48:42.946066 Sent 0x|09:00|3C:00|00|01:00|A9:00:02:60|
12:48:43.031706 Recv 0x|04:00|3C:00|02|01|
12:48:43.146600 Sent 0x|09:00|3F:00|00|01:00|A9:00:02:60|
12:48:43.207665 Recv 0x|04:00|3F:00|02|00|
12:48:43.208658 Sent 0x|11:00|40:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:48:43.409048 Sent 0x|09:00|41:00|00|01:00|A9:00:02:60|
12:48:43.482677 Recv 0x|04:00|41:00|02|01|
12:48:43.609350 Sent 0x|09:00|43:00|00|01:00|A9:00:02:60|
12:48:43.659614 Recv 0x|04:00|43:00|02|01|
12:48:43.809783 Sent 0x|09:00|44:00|00|01:00|A9:00:02:60|
12:48:43.867547 Recv 0x|04:00|44:00|02|01|
12:48:44.009999 Sent 0x|09:00|45:00|00|01:00|A9:00:02:60|
12:48:44.067605 Recv 0x|04:00|45:00|02|01|
12:48:44.210310 Sent 0x|09:00|47:00|00|01:00|A9:00:02:60|
12:48:44.295689 Recv 0x|04:00|47:00|02|01|
12:48:44.410610 Sent 0x|09:00|48:00|00|01:00|A9:00:02:60|
12:48:44.472626 Recv 0x|04:00|48:00|02|00|
12:48:44.473215 Sent 0x|11:00|49:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:48:44.673718 Sent 0x|09:00|4A:00|00|01:00|A9:00:02:60|
12:48:44.773517 Recv 0x|04:00|4A:00|02|01|
12:48:44.874162 Sent 0x|09:00|4C:00|00|01:00|A9:00:02:60|
12:48:44.950694 Recv 0x|04:00|4C:00|02|01|
12:48:45.074450 Sent 0x|09:00|4D:00|00|01:00|A9:00:02:60|
12:48:45.124658 Recv 0x|04:00|4D:00|02|01|
12:48:45.274793 Sent 0x|09:00|4E:00|00|01:00|A9:00:02:60|
12:48:45.322584 Recv 0x|04:00|4E:00|02|01|
12:48:45.475099 Sent 0x|09:00|51:00|00|01:00|A9:00:02:60|
12:48:45.528592 Recv 0x|04:00|51:00|02|01|
12:48:45.675549 Sent 0x|09:00|52:00|00|01:00|A9:00:02:60|
12:48:45.732762 Recv 0x|04:00|52:00|02|00|
12:48:45.733656 Sent 0x|11:00|53:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:48:45.934072 Sent 0x|09:00|54:00|00|01:00|A9:00:02:60|
12:48:45.985610 Recv 0x|04:00|54:00|02|01|
12:48:46.134651 Sent 0x|09:00|56:00|00|01:00|A9:00:02:60|
12:48:46.183608 Recv 0x|04:00|56:00|02|01|
12:48:46.334950 Sent 0x|09:00|57:00|00|01:00|A9:00:02:60|
12:48:46.399693 Recv 0x|04:00|57:00|02|01|
12:48:46.535293 Sent 0x|09:00|58:00|00|01:00|A9:00:02:60|
12:48:46.579582 Recv 0x|04:00|58:00|02|01|
12:48:46.735896 Sent 0x|09:00|5A:00|00|01:00|A9:00:02:60|
12:48:46.788654 Recv 0x|04:00|5A:00|02|01|
12:48:46.936190 Sent 0x|09:00|5B:00|00|01:00|A9:00:02:60|
12:48:46.992702 Recv 0x|04:00|5B:00|02|00|
12:48:46.993371 Sent 0x|11:00|5C:00|80|00:00|AE:00:02:3B:0F:81:3C:0F:01:A6:00:02|
12:48:47.193783 Sent 0x|09:00|5D:00|00|01:00|A9:00:02:60|
12:48:47.263712 Recv 0x|04:00|5D:00|02|01|
12:48:47.394209 Sent 0x|09:00|5E:00|00|01:00|A9:00:02:60|
12:48:47.439528 Recv 0x|04:00|5E:00|02|01|
12:48:47.594571 Sent 0x|09:00|5F:00|00|01:00|A9:00:02:60|
12:48:47.652589 Recv 0x|04:00|5F:00|02|01|
12:48:47.794863 Sent 0x|09:00|62:00|00|01:00|A9:00:02:60|
12:48:47.874742 Recv 0x|04:00|62:00|02|01|
12:48:47.995327 Sent 0x|09:00|63:00|00|01:00|A9:00:02:60|
12:48:48.067742 Recv 0x|04:00|63:00|02|01|
12:48:48.195556 Sent 0x|09:00|64:00|00|01:00|A9:00:02:60|
12:48:48.242525 Recv 0x|04:00|64:00|02|00|
12:48:48.243357 Sent 0x|11:00|65:00|80|00:00|AE:00:02:05:0F:81:3C:0F:01:A6:00:02|
12:48:48.443723 Sent 0x|09:00|67:00|00|01:00|A9:00:02:60|
12:48:48.498720 Recv 0x|04:00|67:00|02|01|
12:48:48.578092 Sent 0x|09:00|6A:00|80|00:00|A3:00:02:00|

Some remarks:

	Until the interruption, the direct commands were the same as
before.

	The stopping occured during the seventh movement.

	The last direct command stopped the motor. This is what
t_forwards.action_stop = stop meant.

Moving a motor to a Specified Position

Connect your EV3 medium motor with port B, connect your computer and
your EV3 brick with an USB cable, replace MAC-address
00:16:53:42:2B:99 with the one of your EV3 brick, then run this
program:

import ev3_dc as ev3
import struct
from math import copysign

my_ev3 = ev3.EV3(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)
my_ev3.verbosity = 1

speed = 10
to_position = 90
port = ev3.PORT_B
brake = 0

ops1 = b''.join((
 ev3.opInput_Device,
 ev3.READY_SI,
 ev3.LCX(0), # LAYER
 ev3.port_motor_input(port), # NO
 ev3.LCX(8), # TYPE (EV3-Medium-Motor)
 ev3.LCX(0), # MODE (Degree)
 ev3.LCX(1), # VALUES
 ev3.GVX(0) # VALUE1
))
reply = my_ev3.send_direct_cmd(ops1, global_mem=4)
from_position = struct.unpack('<f', reply)[0]

diff = to_position - round(from_position)
speed *= round(copysign(1, diff))
steps = abs(diff)

ops2 = b''.join((
 ev3.opOutput_Reset,
 ev3.LCX(0), # LAYER
 ev3.LCX(port), # NOS

 ev3.opOutput_Step_Speed,
 ev3.LCX(0), # LAYER
 ev3.LCX(port), # NOS
 ev3.LCX(speed), # SPEED
 ev3.LCX(0), # STEP1
 ev3.LCX(steps), # STEP2
 ev3.LCX(0), # STEP3
 ev3.LCX(brake), # BRAKE - 1 (yes) or 0 (no)

 ev3.opOutput_Start,
 ev3.LCX(0), # LAYER
 ev3.LCX(port) # NOS
))
my_ev3.send_direct_cmd(ops2)

Please move the motor by hand and then run the program again. The
motor will return to the defined position of 90 degrees. We use 4
already known operations and it’s obvious, that this algorithm can
easily be encapsulated into a method of a motor class.

The output:

13:19:05.149392 Sent 0x|0D:00|2A:00|00|04:00|99:1D:00:11:07:00:01:60|
13:19:05.155311 Recv 0x|07:00|2A:00|02|00:00:04:C2|
13:19:05.155969 Sent 0x|14:00|2B:00|00|00:00|A2:00:02:AE:00:02:0A:00:81:7B:00:00:A6:00:02|
13:19:05.161331 Recv 0x|03:00|2B:00|02|

Direct Commands are Machine Code Programs

There are operations for calculations and much more. Direct commands
are little machine code programs. Let’s write a single direct command,
that does the same thing.

import ev3_dc as ev3

my_ev3 = ev3.EV3(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)
my_ev3.verbosity = 1

speed = 10
to_position = 90
port = ev3.PORT_B
brake = 0

ops = b''.join((
 ev3.opInput_Device,
 ev3.READY_SI,
 ev3.LCX(0), # LAYER
 ev3.port_motor_input(port), # NO
 ev3.LCX(8), # TYPE (EV3-Medium-Motor)
 ev3.LCX(0), # MODE (Degree)
 ev3.LCX(1), # VALUES
 ev3.LVX(0), # VALUE1 - from_position (DATAF)

 ev3.opMove32_F,
 ev3.LCX(to_position), # SOURCE
 ev3.LVX(4), # DESTINATION - to_position (DATAF)

 ev3.opSubF,
 ev3.LVX(4), # SOURCE1 - to_position (DATAF)
 ev3.LVX(0), # SOURCE2 - from_position (DATAF)
 ev3.LVX(0), # DESTINATION - diff (DATAF)

 ev3.opMath,
 ev3.ABS, # CMD
 ev3.LVX(0), # DATA X - diff (DATAF)
 ev3.LVX(4), # RESULT - abs(diff) (DATAF)

 ev3.opDivF,
 ev3.LVX(0), # SOURCE1 - diff (DATAF)
 ev3.LVX(4), # SOURCE2 - abs(diff) (DATAF)
 ev3.LVX(0), # DESTINATION - sign of diff (DATAF)

 ev3.opMove32_F,
 ev3.LCX(speed), # SOURCE
 ev3.LVX(8), # DESTINATION - speed (DATAF)

 ev3.opMulF,
 ev3.LVX(0), # SOURCE1 - sign of diff (DATAF)
 ev3.LVX(8), # SOURCE2 - speed (DATAF)
 ev3.LVX(0), # DESTINATION - signed_speed (DATAF)

 ev3.opMoveF_32,
 ev3.LVX(4), # SOURCE - abs(diff) (DATAF)
 ev3.LVX(4), # DESTINATION - abs(diff) (DATA32)

 ev3.opMoveF_8,
 ev3.LVX(0), # SOURCE - signed_speed (DATAF)
 ev3.LVX(0), # DESTINATION - signed_speed (DATA8)

 ev3.opOutput_Reset,
 ev3.LCX(0), # LAYER
 ev3.LCX(port), # NOS

 ev3.opOutput_Step_Speed,
 ev3.LCX(0), # LAYER
 ev3.LCX(port), # NOS
 ev3.LVX(0), # SPEED - signed_speed (DATA8)
 ev3.LCX(0), # STEP1
 ev3.LVX(4), # STEP2 - abs(diff) (DATA32)
 ev3.LCX(0), # STEP3
 ev3.LCX(brake), # BRAKE - 1 (yes) or 0 (no)

 ev3.opOutput_Start,
 ev3.LCX(0), # LAYER
 ev3.LCX(port) # NOS
))
my_ev3.send_direct_cmd(ops, local_mem=12)

Some remarks:

	This direct command allocates 12 bytes of local memory for its
intermediate results. Most of these are 4-bytes-numbers, therefore
the referenced addresses are LVX(0), LVX(4) and LVX(8).

	We need to be carefull with the data formats, here we use numbers
in three formats:

	DATA8 (1 byte integer),

	DATA32 (4 bytes integer) and

	DATAF (4 bytes floating point).

	We have to translate some of the formats:

	opMove32_F translates a 4 bytes integer into a floating point
number,

	opMoveF_32 does the opposite,

	opMoveF_8 translates a floating point number into a 1 byte
integer.

	We do the calculations with floating point numbers and use:

	opDivF for division,

	opMulF for multiplication and

	opMath with CMD ABS to get the absolute value of a floating point number.

That’s machine code, welcome to the sixties! Think a minute about
coding complex algorithms this way and realize what the apollo program
meant for the software developers in these times. But keep in mind,
coding machine code is great for performance. Here the communication
is reduced from 2 direct commands to one. In case of protocol USB,
this means some 0.05 sec.

Touch

Touch is a subclass of EV3.
You can use it to read values from a single touch sensor without any knowledge of direct
command syntax.

To use multiple touch sensors, you can create multiple instances of class Touch.

Asking for the current state

Property touched is of type bool and tells,
if the sensor currently is touched.

Connect your EV3 device with your local network via WiFi and make
sure, it’s the only EV3 devices in the network. Connect a touch
sensor (it may be an EV3-Touch or a NXT-Touch) with PORT 1, then start
this program.

import ev3_dc as ev3

with ev3.Touch(ev3.PORT_1, protocol=ev3.WIFI) as my_touch:
 print(str(my_touch) + ':', end=' ')
 print('touched' if my_touch.touched else 'not touched')

Some remarks:

	You already know, how to modify the program, when using protocols
Bluetooth or USB.

	As the output line shows, the class knows it’s sensor type.

	Run the program multiple times with touched and not touched sensor.

	Test what happens, when no sensor is connected to PORT 1.

	Test what happens, when another sensor type is connected to PORT 1.

	Switch on verbosity and you will see the communication data.

Multiple instances of class Touch

Connect an additional touch sensor (again it may be an EV3-Touch or a
NXT-Touch) with PORT 4, then start this program.

import ev3_dc as ev3

with ev3.Touch(ev3.PORT_1, protocol=ev3.WIFI) as touch_left:
 touch_right = ev3.Touch(ev3.PORT_4, ev3_obj=touch_left)
 print(str(touch_left) + ':', end=' ')
 print('touched' if touch_left.touched else 'not touched')
 print(str(touch_right) + ':', end=' ')
 print('touched' if touch_right.touched else 'not touched')

Some remarks:

	Both touch sensors share the same EV3 device. Therefore only the
first instance is initialized with keyword argument
protocol. The second instance is initialized with keyword
argument ev3_obj instead.

	touch_left owns the connection, touch_right is its joint user.

	A single EV3 device controls up to four sensors and additionally
up to four motors. You will deal with more than two objects, when
you make use of EV3’s full capacity.

	Both sensors are handled independently, therefore the
communication is not optimized. The request of both sensors’ state
could have been done in a single direct command, but here it needs
two instead.

Bump-Mode

Touch sensors provide two modes, touch and bump (see sections
Touch mode of the Touch Sensor and Bump
mode of the Touch Sensor). The touch-mode is, what we
have seen above: the sensor replies it’s current state. The bump-mode
counts the number of bumps since the last sensor clearing.

Connect your EV3 device with your local network via WiFi.
Replace the MAC-address by the one of your EV3 brick, connect a touch sensor
(it may be an EV3-Touch or a NXT-Touch)
with PORT 1, then start this program.

import ev3_dc as ev3
from time import sleep

my_touch = ev3.Touch(
 ev3.PORT_1,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
)

print('\n' + 'countdown ...' + '\n')
for n in range(10, 0, -1):
 print('\r' + f'{n:2d} ', end='', flush=True)
 sleep(1)

print('\r' + '** go ** ', end='', flush=True)

my_touch.bumps = 0
sleep(5)

print('\r' + 'number of bumps:', my_touch.bumps)

Some remarks:

	This program counts the number of bumps for a timespan of 5 sec.

	To prevent jumping the start, the sensor clearing is done at the
end of the countdown.

	Instead of setting property bumps = 0, you alternatively can
call method clear().

	Compare the version above with the manually coded direct commands
from section Bump mode of the Touch Sensor
and you will realize the handiness of sensor classes.

Infrared

Class Infrared is a subclass of
EV3. You can use it to read values from a single
infrared sensor without any knowledge of direct command syntax.

The infrared sensor sends and receives infrared light signals. It is
able to calculate distances by analyzing reflected light. It also is
able to communicate with the EV3 beacon device. This allows to
determine the current position of the beacon and it allows to use the
bacon as a remote control.

To use multiple infrared sensors simultaneously, you can create
multiple instances of this class.

Asking for the distance from a surface

Class Infrared has an attribute
distance, which is of type float and
tells, if the the sensor currently sees some surface in front of the
sensor and in a distance closer than 1.00 m.

Connect your EV3 device with your local network via WiFi. Replace the
MAC-address by the one of your EV3 brick, connect an infrared sensor
with PORT 2, then start this program.

import ev3_dc as ev3

with ev3.Infrared(
 ev3.PORT_2,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_infrared:
 dist = my_infrared.distance
 if dist:
 print(f'distance: {dist:3.2f} m')
 else:
 print('seen nothing')

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or USB.

	Run the program multiple times with different surfaces and distances.

	Test what happens, when no sensor is connected to PORT 2.

	Test what happens, when another sensor type is connected to PORT 2.

	Test with distances larger than 1.00 m.

	Every time, you refrence attribute
distance, you again start a
communication between your program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see
the communication data.

Asking for a beacon’s position

Class Infrared has an attribute
beacon, which returns a named tuple of
type Beacon. It tells, if the sensor currently sees an active
beacon, which is sending on the requested channel.

Connect your EV3 device with your local network via WiFi. Replace the
MAC-address by the one of your EV3 brick. Connect an infrared sensor
with PORT 2, place a beacon somewhere in front of the sensor, select
channel 3 and switch on the beacon, then start this program.

import ev3_dc as ev3

with ev3.Infrared(
 ev3.PORT_2,
 channel=3,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_infrared:
 print(my_infrared)
 print(f'beacon on channel {my_infrared.channel}: {my_infrared.beacon}')

Some remarks:

	If you prefer protocols Bluetooth or USB, you know how to change
the program.

	The named tuple Beacon has two items, heading and distance,
where heading is between -25 and 25, and distance is in
meters.

	The meaning of the heading values:

	-25: far left

	0: straight forwards

	25: far right

The output of my program was:

The beacon was positioned left ahead in a distance of 23 cm.

Using up to four beacons

If you need to identify the exact orientation and position of your EV3
device, you can use multiple beacons. Because they send on four
different channels, you can simultaneously up to four of
them. Attribute beacons allows to ask for
their positions at once.

As before, connect your EV3 device with your local network via
WiFi. Replace the MAC-address by the one of your EV3 brick. Connect an
infrared sensor with PORT 2, place up to four beacons somewhere in
front of the sensor, select different channels and switch on the
beacons, then start this program.

import ev3_dc as ev3

with ev3.Infrared(
 ev3.PORT_2,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_infrared:
 print(f'beacons: {my_infrared.beacons}')

The output of my program run:

beacons: (None, Beacon(heading=5, distance=0.32), None, None)

Some remarks:

	This was a single beacon, sending on channel 2, which was
positioned right ahead in a distance of 32 cm.

	The returned data is a tuple of four items, one per channel.

	If no beacon was found, the channel’s item is set to None.

	If a beacon was found, the channel’s item is of type Beacon.

Using the beacon as a remote control

Class Infrared has an attribute
remote, which returns a named tuple of
type Remote. It tells, which of the beacon’s buttons currently were
pushed.

Connect your EV3 device with your local network via WiFi. Replace the
MAC-address by the one of your EV3 brick. Connect an infrared sensor
with PORT 2, place a beacon somewhere in front of the sensor, select
channel 3 and switch on the beacon, then start this program.

import ev3_dc as ev3
from time import sleep

with ev3.Infrared(
 ev3.PORT_2,
 channel=3,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_infrared:
 while True:
 remote_state = my_infrared.remote
 if remote_state is not None:
 break
 sleep(0.1)

 print(f'state of the remote on channel {my_infrared.channel}: {remote_state}')

Some remarks:

	Every 100 ms, the state of the remote is requested, which means
request and reply communication between program and EV3 device ten
times per second.

	The state of the remote control is stored in variable remote_state. This allows to
use it to end the loop as well as for the printing.

	You will easily imagine, how to define different actions for
different states of the remote data.

The output of my program’s execution:

state of the remote on channel 3: Remote(permanent=False, red_up=False, red_down=True, blue_up=True, blue_down=False)

This says, someone pushed two of the buttons simultaneously. The
communication does not handle triple pushes and double pushes are
restricted to the buttons red_up, red_down, blue_up and
blue_down. Altogether, we can distinguish 11 different states
plus none pushes.

Reading multiple remote control channels simultaneously

If you try to use multiple beacons simultaneously as remote controls,
you can do that with attribute remotes,
which returns a tuple of four items, one per channel. As you will
have expected, each of them may be None or of type Remote.

As before, connect your EV3 device with your local network via
WiFi. Replace the MAC-address by the one of your EV3 brick. Connect an
infrared sensor with PORT 2, then start the program. After some time
push any button of a beacon.

import ev3_dc as ev3
import time

with ev3.Infrared(
 ev3.PORT_2,
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_infrared:
 print(f'started at {time.strftime("%H:%M:%S", time.localtime())}')

 def any_remote():
 for remote in my_infrared.remotes:
 if remote:
 return remote

 while True:
 the_active_one = any_remote()
 if the_active_one:
 break
 time.sleep(0.1)

 print(the_active_one)
 print(f'stopped at {time.strftime("%H:%M:%S", time.localtime())}')

The output of my program’s execution:

started at 18:32:01
Remote(permanent=False, red_up=False, red_down=True, blue_up=True, blue_down=False)
stopped at 18:32:09

Some remarks:

	Eight seconds after the program’s start, someone simultaneously
pressed two buttons of a beacon. These buttons were red_down and
blue_up.

	This program does not care about channels. Function any_remote
loops over all four channels and if it finds one unequal None,
this one is returned.

	May be, your program only supports one beacon as a remote control
but you do not trust the user to select the correct channel. This
may be the solution: you read all four channels and then select
the correct one.

	May be your program is thought for multiple users and every user
has his own beacon. Then any of them can end the program.

Ultrasonic

Class Ultrasonic is a subclass of
EV3. You can use it to read values from a single
ultrasonic sensor without any knowledge of direct command syntax.

The ultrasonic sensor sends and receives ultrasonic sound signals. It
is able to calculate distances by analyzing reflected sound. This is a
subset of the infrared sensors functionality,

The ultrasonic sensor returns a distance of 2.55 m, when it does not
detect anything. Class Ultrasonic replaces this by value None.

If you like to use multiple ultrasonic sensors simultaneously, you can
create more than one instance of this class.

Asking for the distance from a surface

Class Ultrasonic has an attribute
distance, which is of type float and
tells, if the the sensor currently sees some surface in front and in
a distance closer than 2.55 m.

Take an USB cable and connect your EV3 device with your
computer. Replace MAC-address 00:16:53:42:2B:99 by the one of your
EV3 brick, connect an ultrasonic sensor (it may be of type
ev3.NXT_ULTRASONIC or ev3.EV3_ULTRASONIC) with PORT 3, then start this
program:

from time import sleep
import ev3_dc as ev3

my_ultrasonic = ev3.Ultrasonic(
 ev3.PORT_3,
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)

while True:
 dist = my_ultrasonic.distance
 if dist:
 break
 sleep(0.1)

print(f'something seen {dist:3.2f} m ahead')

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or WiFi.

	Run the program multiple times with different surfaces and distances.

	Test what happens, when no sensor is connected to PORT 2.

	Test what happens, when another sensor type is connected to PORT 2.

	Test for the maximum distance and determine if this depends on the
surface material.

	Every reference of property distance starts a new communication
between the program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see
the communication data.

Color

Class Color is a subclass of
EV3. You can use it to read values from a single
color sensor without any knowledge of direct command syntax. The color
sensor measures light intensity or colors. This may be reflected
light. If you like to use multiple color sensors simultaneously, then
create more than one instance of this class.

The reflected intensity of red light

Class Color has an attribute
reflected, which is of type int and tells the
intensity of the reflected red light in percent. This says: it
switches on red light and then measures the reflection from a
surface. From then on the red light shines permanently. With constant
surface type and color, this allows to measure small distances (this
needs calibration). Alternatively, when the distance is constant, it
allows to distinguish dark from bright surfaces (e.g. for line
followers). Because of the red light, it tends to categorize red
surfaces as bright and green surfaces as dark.

Take an USB cable and connect your EV3 device with your
computer. Replace MAC-address 00:16:53:42:2B:99 by the one of your
EV3 brick, connect a color sensor (it may be of type
ev3.NXT_COLOR or ev3.EV3_COLOR) with PORT 1, then start this
program:

import ev3_dc as ev3

my_color = ev3.Color(
 ev3.PORT_1,
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)

print(f'reflected intensity is {my_color.reflected} %')

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or WiFi.

	Run the program multiple times with different surface colors and
distances.

	Test what happens, when no sensor is connected to PORT 1.

	Test what happens, when another sensor type is connected to PORT 1.

	Every reference of property reflected starts a new communication
between the program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see the
communication data.

My program’s output was:

reflected intensity is 17 %

Recognize colors

Class Color has an attribute
color, which is of type int and tells the
color of the surface in front of the sensor. This ist done when the
sensor shines white.

Take an USB cable and connect your EV3 device with your
computer. Replace MAC-address 00:16:53:42:2B:99 by the one of your
EV3 brick, connect a color sensor (it may be of type
ev3.NXT_COLOR or ev3.EV3_COLOR) with PORT 1, then start this
program:

import ev3_dc as ev3

my_color = ev3.Color(
 ev3.PORT_1,
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)

color = (
 'none',
 'black',
 'blue',
 'green',
 'yellow',
 'red',
 'white',
 'brown'
)[my_color.color]
print('the color is', color)

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or WiFi.

	Run the program multiple times with different surface colors in
front of the sensor.

	Test what happens, when no sensor is connected to PORT 1.

	Test what happens, when another sensor type is connected to PORT 1.

	Every reference of property color starts a new communication
between the program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see the
communication data.

	The light emission is permanent. Therefore the sensor permanently
switches on white light.

	NXT-Color does never answer with 0 or 7, it therefore will never
see none or brown.

	You can use the constants ev3.NONECOLOR, ev3.BLACKCOLOR,
etc. if your program asks for specific colors.

My program’s output was:

the color is green

Red green blue Color Intensities

Class Color has an attribute
rgb_raw, which is a tuple of three int type values and tells the
color of the surface in front of the sensor. This ist done when the
sensor shines with all three led colors on.

Take an USB cable and connect your EV3 device with your
computer, connect a color sensor (it must be of type
ev3.EV3_COLOR) with PORT 1, then start this
program:

import ev3_dc as ev3

my_color = ev3.Color(
 ev3.PORT_1,
 protocol=ev3.USB
)
print(my_color.rgb_raw)

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or WiFi.

	Run the program multiple times with different surface colors in
front of the sensor. Also vary the distance from the surface.

	Be aware, that every reference of property rgb_raw starts a new communication
between the program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see the
communication data.

	The light emission is permanent. Therefore the sensor permanently
switches on all its LED light colors.

My program’s output with a white surface in front of the sensor:

RawRGBColor(red=253, green=292, blue=183)

Some remarks:

	Maybe you did not expect to get values higher than 255. Keep in
mind, that sensor ev3.EV3_COLOR is normed to values from 0
to 1024.

	The measurement is done with reflected light and consequently
depends on the color spectrum of the light source. The blue part
of the light source’s frequencies is under-represented, the green
part is over-represented and this is what you find in the result
above.

	The result from the white surface can be used for a color balance [https://en.wikipedia.org/wiki/Color_balance], which is well
known from photography or image processing.

	Geometry also plays its role in the measured intensities. The blue
light source is closest to the sensor, the green one is most
distant. As a consequence, smaller distances between sensor and
surface result in more balanced results.

Balanced red green blue Color Intensities

Class Color has an attribute
rgb, which is very similar to attribute
rgb_raw, but is white balanced.

Take an USB cable and connect your EV3 device with your
computer, connect a color sensor (it must be of type
ev3.EV3_COLOR) with PORT 1, then start this
program:

import ev3_dc as ev3

my_color = ev3.Color(ev3.PORT_1, protocol=ev3.USB)
my_color.rgb_white_balance = (253, 292, 183)
print(my_color.rgb)

Some remarks:

	This program uses the raw values, measured on a white surface to
do the white balance.

	Replace the values for the white balance by the result of your own
measurement.

	Run the program multiple times with different surface colors in
front of the sensor. Also vary the distance from the surface.

My program’s output with a green surface in front of the sensor:

RGBColor(red=43, green=114, blue=54)

Some remarks:

	Attribute rgb is normed to values between 0 and 255. This is what you know as rgb colors.

	Use a color picker, like this one [https://www.w3schools.com/colors/colors_rgb.asp] to control
your results.

Ambient light intensity

Class Color has an attribute
ambient, which is of type int and tells the
intensity of the ambient light in percent. One would expect, that this
ist done without any light emission. Surprisingly the EV3_Color
sensor switches on its blue light, when it measures ambient light. The
NXT-Color sensor behaves as expected, it switches its light off.

Take an USB cable and connect your EV3 device with your
computer. Replace MAC-address 00:16:53:42:2B:99 by the one of your
EV3 brick, connect a color sensor (it may be of type
ev3.NXT_COLOR or ev3.EV3_COLOR) with PORT 1, then start this
program:

import ev3_dc as ev3

my_color = ev3.Color(
 ev3.PORT_1,
 protocol=ev3.USB,
 host='00:16:53:42:2B:99'
)

print(f'ambient intensity is {my_color.ambient} %')

Some remarks:

	You already know, how to change the program for using protocols
Bluetooth or WiFi.

	Run the program multiple times with different light intensity in
front of the sensor.

	Test what happens, when no sensor is connected to PORT 1.

	Test what happens, when another sensor type is connected to PORT 1.

	Every reference of property ambient starts a new communication
between the program and the EV3 device.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see the
communication data.

	The light emission is permanent. Therefore EV3-Color permanently
changes to blue light, NXT-Color permanently switches its light
off.

My program’s output was:

ambient intensity is 9 %

Gyro

Class Gyro is a subclass of
EV3. You can use it to read values from a single
LEGO gyro sensor (a gyroscope [https://en.wikipedia.org/wiki/Gyroscope]) without any knowledge of
direct command syntax.

The gyro sensor is used to measure one-dimensional orientation and
angular velocity. These attributes allow to get the measurements:

	angle measures the current orientation as
an angle, which is an integer representing the sensor’s clockwise
rotation.

	rate is an integer, representing the
sensor’s clockwise rotation rate (or angular velocity [https://en.wikipedia.org/wiki/Angular_velocity]) in degree per
second.

	state holds both, the current angle and
the current rotation rate. It is of type GyroState.

If you like to use multiple gyro sensors simultaneously (e.g. to
receive rotations along multiple axes), you can create more than one
instance of this class.

Asking for the current orientation angle

Choose settings (protocol and host) to connect the EV3 to your
computer. Replace the settings in the program below, connect a gyro
sensor to PORT_1, run this program and rotate the gyro sensor:

from time import sleep
import ev3_dc as ev3

settings = {"protocol":ev3.BLUETOOTH, "host":"00:16:53:81:D7:E2"}
with ev3.Gyro(ev3.PORT_1, **settings) as gyro:
 while True:
 current_angle = gyro.angle
 print(f"\rThe current angle is {current_angle:4d} °", end='')
 if current_angle >= 360:
 print("\n" + "The sensor made a full clockwise turn!")
 break
 elif current_angle <= -360:
 print("\n" + "The sensor made a full counterclockwise turn!")
 break
 sleep(0.05)

	Some remarks:

	
	Mathematically, clockwise rotation is measured with negative
values, counterclockwise rotation with positive ones. LEGO’s gyro
sensor does not follow this convention! If you face the the red
icon on its top, then clockwise rotation measures positive.

	In the moment, when class Gyro is initiated,
the sensor’s current rotation angle becomes value zero.

	What a LEGO gyro sensor measures is not really
orientation. Instead it measures the orientation angle between an
original orientation and the current one. If the sensor made
multiple full rotations, then angle will correctly show
it. Modify the program and break the loop when at least 2 full
turns have been made.

	Every reference of property angle starts a new communication
between the program and the EV3 device.

	Method reset() allows to reset the zero
position at any other time or to set the current angle to any
other value.

	Printing ‘\r’ (carriage return) returns to the beginning of the
current line. This allows to print the same line again and again.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see the
communication data. This will show you, that the measurements
use mode 3, which is EV3-Gyro-Rate & Angle and get angle and rate
as results.

Asking for the current rotation rate

Connect your EV3 device and your computer via USB cable, connect a
gyro sensor to PORT_1, then run this program and rotate the gyro sensor:

from time import sleep
import ev3_dc as ev3

with ev3.Gyro(ev3.PORT_1, protocol=ev3.USB) as gyro:
 min_rate, max_rate = 0, 0
 print('for 10 sec. do some rotation movements')
 for i in range(100):
 cur_rate = gyro.rate
 min_rate = min(min_rate, cur_rate)
 max_rate = max(max_rate, cur_rate)
 sleep(0.1)
print(f'max. rate: {max_rate} °/s, min. rate: {min_rate} °/s')

	Some remarks:

	
	Every reference of property rate starts a new communication
between the program and the EV3 device. This is why we use
variable cur_rate (current rate) to hold the values.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see
the communication data.

Asking for the current state (angle and rate)

Connect your EV3 device and your computer via USB cable, connect a
gyro sensor to PORT_1, then run this program and rotate the gyro sensor:

import time import sleep
import ev3_dc as ev3

with ev3.Gyro(ev3.PORT_1, protocol=ev3.USB) as gyro:
 cs = gyro.state
 print(f'angle: {cs.angle:4d} °, rate: {cs.rate:4d} °/s', end='')
 for i in range(10):
 sleep(1)
 cs = gyro.state
 print('\r' + f'angle: {cs.angle:4d} °, rate: {cs.rate:4d} °/s', end='')
 print()

	Some remarks:

	
	Every reference of property state starts a new communication
between the program and the EV3 device. This is why we use
variable cs (current state) to hold the values.

	Porperty state is of type GyroState, which has two attributes:
angle and rate.

	Printing ‘\r’ (carriage return) returns to the beginning of the
current line. This allows to print the same line again and again.

	Switch on verbosity by setting attribute
verbosity to value 1 and you will see
the communication data.

Reset the original orientation

Sometimes the orientation in the moment of class initialization is not
the best point of reference. E.g. an algorithm for a balancing device
is clearer coded, when the perfect balance becomes the point of
reference. Method reset() allows to do exactly
that.

Connect your EV3 device and your computer via USB cable, connect a
gyro sensor to PORT_1, then run this program and don’t rotate the gyro
sensor:

from time import sleep
import ev3_dc as ev3

with ev3.Gyro(ev3.PORT_1, protocol = ev3.USB) as gyro:
 print(f"The current angle is {gyro.angle} °")
 sleep(5)

 gyro.reset(angle=90)
 print(f"After resetting: The current angle is {gyro.angle} °")
 sleep(5)

 gyro.reset(angle=180)
 print(f"After another resetting: The current angle is {gyro.angle} °")
 sleep(5)

 gyro.reset()
 print(f"After resetting again: The current angle is {gyro.angle} °")

The output:

	Some remarks:

	
	Run the program again and do some rotation movements of the sensor
while the sleeping. You will see the very same output, why?

	Modify the program and do the sleeping between the resets and the
measurements. Then start the program again and do some rotation movements
of the sensor.

Sound

Sound is a subclass of FileSystem.
It provides higher order methods to play tones and sound files.

Play a Tone

Method tone() of class
Sound plays tones with given frequencies. Connect
your EV3 brick and your computer with an USB cable, then start this
program:

import ev3_dc as ev3

with ev3.Sound(protocol=ev3.USB) as sound:
 sound.verbosity = 1
 sound.tone(250, duration=1, volume=100)

This plays a tone with frequency 250 Hz for one second at maximum
volume. If no duration is given, method tone()
plays the tone unlimited. If no volume is given it takes the volume,
which can be set as a property of class Sound. If neither was set, it
takes the volume from the EV3 device. The frequency must be in a range
of 250 - 10.000 Hz, the volume must be in a range of 1 - 100.

The output:

13:01:25.162280 Sent 0x|0F:00|2B:00|00|00:00|94:01:81:64:82:FA:00:82:E8:03|
13:01:25.168008 Recv 0x|03:00|2B:00|02|

Play a Sound File

Robot sound files are a special pulse code modulation [https://en.wikipedia.org/wiki/Pulse-code_modulation] format for
audio signals. The single channel signal has a sample rate of 8 kHz
and an 8 bit resolution. This blog [https://tiebing.blogspot.com/2019/09/lego-ev3-sound-file-rsf-format.html]
describes, how to add the header information and create robot sound
files. Some sound files can be found on the EV3 device. Method
play_sound() allows to play these sound files.

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3
from time import sleep

hugo = ev3.Sound(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99', volume=100)
hugo.verbosity = 1

hugo.play_sound(
 './ui/DownloadSucces.rsf',
 repeat=True
)

sleep(5)

hugo.stop_sound()

Some remarks:

	The program plays a sound file repeatedly and stops the sound after 5 sec. This is
exactly, what program Playing Sound Files repeatedly does.

	The timing is done by the program.

	It needs to call method stop_sound() to
stop the playing, otherwise it would last forever.

The output:

13:45:30.663648 Sent 0x|1E:00|2A:00|80|00:00|94:03:81:64:84:2E:2F:75:69:2F:44:6F:77:6E:6C:6F:61:64:53:75:63:63:65:73:00|
13:45:35.669587 Sent 0x|07:00|2B:00|80|00:00|94:00|

Play a Sound File as a Thread Task

thread_task [https://thread-task.readthedocs.io/en/latest] objects
allow to define the timing beforehand, when the thread task is
created. Starting thread tasks allows to do multiple things parallel.

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3

hugo = ev3.Sound(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99', volume=100)
hugo.verbosity = 1

t_sound = hugo.sound(
 './ui/DownloadSucces.rsf',
 duration=5,
 repeat=True
)

t_sound.start()

Some remarks:

	method sound() returns a thread task object, we name it t_sound.

	t_sound can be started, stopped, continued and restarted. We only start it.

	t_sound runs in the background. If you add some more commands to this program, you will
realize, they are executed parallel to t_sound.

	the timing is done inside the thread task object.

	stopping the sound also is done by the task object.

	thread task objects encapsulate program logik behind a simple public API.

The output:

14:06:40.170520 Sent 0x|1E:00|2A:00|80|00:00|94:03:81:64:84:2E:2F:75:69:2F:44:6F:77:6E:6C:6F:61:64:53:75:63:63:65:73:00|
14:06:45.170841 Sent 0x|07:00|2B:00|80|00:00|94:00|

Play a local Sound File

If you combine method load_file() from
class FileSystem() with the above described
functionality, you can also play local sound files.

Find the location of LEGO’s sound files, which in my case was:
…/Program Files (x86)/LEGO Software/LEGO MINDSTORMS EV3 Home
Edition/Resources/BrickResources/Retail/Sounds/files (I copied this directory to
a location with a shorter path). Modify
the program by replacing the file location. Take an USB cable and
connect your EV3 brick with your computer then start the following
program.

import ev3_dc as ev3

with ev3.Sound(protocol=ev3.USB, volume=20) as hugo:
 hugo.sound(
 '../Sound/Expressions/Laughing 2.rsf',
 local=True
).start(thread=False)
print('all done')

Some remarks:

	keyword argument local makes the distinction between local sound
files and sound files on the EV3 device. In this case, the sound
file exists in the file system of the machine, which runs the
program and the relative path is from the directory, where this
python program is located.

	Starting a Thread Task with thread=False lets it behave
traditional, it does its actions and your program continues with
execution, when they are done.

Jukebox

Jukebox is a subclass of EV3.
You can use it to play tones or to change the LED color without
internal knowledge of direct commands.

But Jukebox is more than that. It combines direct commands with
thread_task [https://thread-task.readthedocs.io/en/latest]. This
allows to use sounds and light effects parallel to other activities.

Change Color

Instead of coding a direct command, like we did in
Changing LED colors, you can do the same thing a bit more
comfortable.

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program

import ev3_dc as ev3
from time import sleep

jukebox = ev3.Jukebox(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')
jukebox.verbosity = 1

jukebox.change_color(ev3.LED_RED_FLASH)

sleep(5)

jukebox.change_color(ev3.LED_GREEN)

For five seconds, the LED will flah red, then it will become green
again. Calling method change_color() hides
the technical details behind a more user friendly API. We set the
verbosity because we like to see the communication between our program
an the EV3 brick. The output:

13:09:05.718859 Sent 0x|08:00|2A:00|80|00:00|82:1B:05|
13:09:10.724762 Sent 0x|08:00|2B:00|80|00:00|82:1B:01|

Obviously, Jukebox sends direct commands.

Play Tone

Playing tones is the other competence of class
Jukebox. Different from method
tone() of class Sound,
these tones are defined by their musical names and not by their
frequencies. Method play_tone() allows to
name them c, d, e, c’, d’ or e’. One does not need to know
their frequencies.

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program

import ev3_dc as ev3

jukebox = ev3.Jukebox(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99')
jukebox.verbosity = 1

jukebox.play_tone("f'''", duration=1, volume=100)

This plays f³ for one second at maximum volume (f³ is the highest tone
of Mozart’s Queen of the night aria). If no duration is given,
method play_tone() plays the tone
unlimited. If no volume is given, it takes the volume, which was set as
an optional argument of class Jukebox’s creation. If neither was set,
it takes the volume from the device.

The output:

13:13:49.071839 Sent 0x|0F:00|2A:00|80|00:00|94:01:81:64:82:75:05:82:E8:03|

Playing the EU-Antemn

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3

with ev3.Jukebox(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as jukebox:
 jukebox.song(ev3.EU_ANTEMN).start()

Some remarks:

	Method song() returns a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object, which can be started, stopped and continued. It plays
tones and changes the LED-colors.

	Starting the thread task does not block the program nor does it
block the EV3 brick. It runs in the background and allows to do
additional things parallel.

EU_ANTEMN is a dictionary:

EU_ANTEMN = {
 "tempo": 100,
 "beats_per_bar": 4,
 "led_sequence": (
 LED_ORANGE,
 LED_GREEN,
 LED_RED,
 LED_GREEN
),
 "tones": (
 ("a'", 1),
 ("a'", 1),
 ("bb'", 1),
 ("c''", 1),

...

 ("g'", 1.5),
 ("f'", .5),
 ("f'", 1)
)
}

Some remarks:

	tempo is beats per minute.

	led_sequence is the color sequence, which changes per bar.

	tones are the tones to play, the duration is not in seconds, but
in beats.

Combine Happy Birthday with the Triad

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3
from thread_task import Sleep

with ev3.Jukebox(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as jukebox:
 (
 jukebox.song(ev3.TRIAD) +
 Sleep(1) +
 jukebox.song(ev3.HAPPY_BIRTHDAY) +
 Sleep(1) +
 jukebox.song(ev3.TRIAD)
).start()

The program builds a chain of tasks, which also is a thread_task [https://thread-task.readthedocs.io/en/latest] object. It
demonstrates how to build tasks of growing complexity, which still
keep their simple public API.

Singing Canon with an EV3 brick

Connect your EV3 brick and your computer via Bluetooth, replace the
MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3
from thread_task import Repeated

with ev3.Jukebox(protocol=ev3.BLUETOOTH, host='00:16:53:42:2B:99') as jukebox:
 Repeated(
 jukebox.song(ev3.FRERE_JACQUES),
 num=3
).start()

Class Repeated [https://thread-task.readthedocs.io/en/latest/api_documentation.html#repeated]
plays the canon three times.

Voice

Voice is a subclass of Sound.
You can use it to get your EV3 device speaking. This is done by
supportting text to speech [https://en.wikipedia.org/wiki/Speech_synthesis]. Method
speak() generates robot sound files (rsf) from
text strings, copies them to the EV3 device and plays them.

Get your EV3 Device Speaking

Take an USB cable and connect your EV3 brick with your computer, then
start this program:

import ev3_dc as ev3

with ev3.Voice(protocol=ev3.USB, lang='it') as voice:
 (
 voice.speak(
 '''
 Bona sera, cara Francesca! Come stai?
 Non vedo l'ora di venire in Italia.
 Stasera è una bella serata.
 '''
) + voice.speak(
 '''
 Hello Brian,
 this is your LEGO EV3 device.
 I speak english and hope, you can understand me.
 If not so, select another language please.
 ''',
 lang='en'
) + voice.speak(
 '''
 Guten Abend, lieber Kurt! Wie geht es Dir?
 Hier regnet es viel, wie schon den ganzen März und April.
 ''',
 lang='de'
)
).start(thread=False)

Some remarks:

	Per call of method speak() this program
does the following steps in the background:

	It calls google’s tts server [https://gtts.readthedocs.io/en/latest/index.html], which
answers with mp3 data.

	It calls the system’s program ffmpeg to convert mp3 into pcm
data of the requested sample rate and resolution.

	It splits the pcm into parts, adds headers and sends part by part to the EV3
device, where they are played.

	This voice was defined as italian speaking. The first call of
method speak() is without argument
lang. The second and third calls are with an explicit lang
argument.

	The timing is automatic, each text gets the time it needs.

Use Voice for your User Interface

Class Voice allows to design user interfaces with spoken
elements. We run a little program, which uses the EV3 device as a
competitve game tool. Two players have 5 seconds time to push a touch
sensor as often they can.

Take an USB cable and connect your EV3 brick with your computer,
connect two touch sensors to ports 1 and 4, then start this program:

import ev3_dc as ev3
from time import sleep

with ev3.Voice(protocol=ev3.USB, volume=100) as voice:
 left_touch = ev3.Touch(ev3.PORT_1, ev3_obj=voice)
 right_touch = ev3.Touch(ev3.PORT_4, ev3_obj=voice)

 voice.speak('Ready', duration=2).start(thread=False)
 voice.speak('Steady', duration=2).start(thread=False)
 voice.speak('Go').start()
 left_touch.bumps = 0
 right_touch.bumps = 0
 sleep(5)

 cnt_left = left_touch.bumps
 cnt_right = right_touch.bumps
 voice.speak(
 f'''
 Stop,
 {cnt_left} on the left side and
 {cnt_right} on the right side
 '''
).start(thread=False)

Some remarks:

	Compare with program Bump-Mode, which uses the display for a
simular user interface.

	Keyword argument ev3_obj allows the three objects, voice,
left_touch and right_touch to share a single connection.
voice owns the connection and shares it with left_touch and
right_touch.

	Optional argument duration lets a task wait some additional time
until the duration time is over. This helps for precise timing.

	speaking Go executes parallel in its own thread. This says: the
five seconds timespan starts when the speaking starts.

	resetting bumps prevents from jump starts.

	the formatted multiline string makes cnt_left and cnt_right
part of the spoken text.

Combine Text to Speech with existing Sound Files

Class Voice is a subclass of
Sound and inherits all their methods. Therefore it
is straight forward to combine the playing of existing sound files
with the speaking of individual texts.

Find the location of LEGO’s sound files, which in my case was:
./Program Files (x86)/LEGO Software/LEGO MINDSTORMS EV3 Home
Edition/Resources/BrickResources/Retail/Sounds/files (I, on my Unix
system, created a soft link named Sound, to get easy access). Modify
the program by replacing the file locations. Take an USB cable and
connect your EV3 device with your computer then start the following
program.

import ev3_dc as ev3
from thread_task import Periodic

with ev3.Voice(protocol=ev3.USB, volume=20, lang='en') as hugo:
 (
 Periodic(
 2, # interval
 hugo.sound(
 '../Sound/Animals/Dog bark 1.rsf',
 local=True
),
 num=2,
 duration=3
) +
 hugo.speak("Don't panic, she plays only", volume=100) +
 hugo.sound(
 '../Sound/Animals/Dog bark 2.rsf',
 local=True,
 volume=100
)
).start(thread=False)

Some remarks:

	All the sound files still exist on the local machine or are
produced on the local machine. From there, they are loaded to the
EV3 device and played.

	The first barking is wrapped in a Periodic, which repeats it 2
times in an interval of 2 seconds and sets the duration to 3
seconds.

	The speaking, which follows the first barking, takes the language from
its Voice object, but overwrites the volume.

	The second barking is straight forward. Its not repeated and it
reads its duration from the header of the sound file.

Motor

Motor is a subclass of EV3.
You can use it to move a single motor without any knowledge of direct
command syntax. Class Motor uses thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task],
which allows to move motors parallel to other activities.

To use multiple motors, you can create multiple instances of class Motor.

Properties of Class Motor

Beside the properties, which it inherits from its parent class
EV3, class Motor provides some
additional properties.

busy

Read only property busy tells if the motor
currently is busy, which means, it is actively moving.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 if my_motor.busy:
 print('the motor currently is busy')
 else:
 print('the motor currently is not busy')

motor_type

Read only property motor_type tells the motor
type of the motor. The values may be 7 (ev3_dc.EV3_LARGE_MOTOR) or 8
(ev3_dc.EV3_MEDIUM_MOTOR).

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print(f'the motor type: {my_motor.motor_type}')

port

Read only property port tells the port to
which this motor is connected. The values may be 1 (ev3_dc.PORT_A), 2
(ev3_dc.PORT_B), 3 (ev3_dc.PORT_C) or 4 (ev3_dc.PORT_D).

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print(f'the port, where this motor is connected to: {my_motor.port}')

position

Property position tells the current motor
position [degree]. After creating a new object of class Motor, its
position is 0°. This is independent from the motor’s history.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print('please move the motor manually (you have 5 sec. of time)')
 sleep(5)

 print(f'the current motor position is: {my_motor.position}°')

Property position allows to reset the motor’s position. This means:
the current position becomes the new zero position. As mentioned
above, this also is done, whenever a new instance of class Motor is
instantiated.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print('please move the motor manually (you have 5 sec. of time)')
 sleep(5)

 print(f'the current motor position is: {my_motor.position}°')

 my_motor.position = 0
 print(f'after resetting, the new motor position is: {my_motor.position}°')

delta_time

Property delta_time affects the data traffic
and precision of controlled movements. Its default value depends on
the connection type and is 0.05 sec. (ev3.USB), 0.10 sec. (ev3.WIFI)
and 0.20 sec. (ev3.BLUETOOTH). You can set this value when creating a
new Motor object, you can also change this value, whenever you need
higher precision or whenever you need to reduce the data traffic.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print(f'the default value of delta_time is: {my_motor.delta_time} sec.')
 sleep(5)

 my_motor.delta_time = 0.2
 print(f'we reduce data traffic and set delta_time to: {my_motor.delta_time} sec.')

speed

Property speed and measures in percent and
sets the speed of this motor’s movements.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
 speed=100
) as my_motor:
 print(f'speed: {my_motor.speed}%')
 sleep(5)

 my_motor.speed = 20
 print(f'new speed: {my_motor.speed}%')

ramp_up and ramp_down

Properties ramp_up and
ramp_down measure in degrees and adjust the
smoothness of precise movements. The higher the speed is, the higher these
values should be. This relationship is a quadratic one. This says: if
you double the speed, you should multiply ramp_up and ramp_down by a
factor four.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print(
 f'defaults of speed: {my_motor.speed}%, ' +
 f'ramp_up: {my_motor.ramp_up}° ' +
 f'and ramp_down: {my_motor.ramp_down}°'
)

The output:

defaults of speed: 10%, ramp_up: 15° and ramp_down: 15°

There are three options to set speed, ramp_up and ramp_down:

	Set them as keyword arguments, when a new object of class
Motor is created.

	Use properties to change these values for defined parts of your program.

	Set them as keyword arguments per movement. This option does not
affect any of the following movements.

ramp_up_time and ramp_down_time

Properties ramp_up_time and
ramp_down_time measure in seconds and adjust
the smoothness of timed movements. As before, the higher the speed is,
the higher these values should be. But here the relationship is
linear. This says: if you double the speed, you should also double
ramp_up_time and ramp_down_time.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 print(
 f'defaults of speed: {my_motor.speed} %, ' +
 f'ramp_up_time: {my_motor.ramp_up_time} sec. ' +
 f'and ramp_down_time: {my_motor.ramp_down_time} sec.'
)

The output:

defaults of speed: 10%, ramp_up_time: 0.15 sec. and ramp_down_time: 0.15 sec.

Precise and Smooth Motor Movements

move_to

Method move_to() returns a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object, which can be started, stopped and continued. You can combine
such Task objects with other Task objects just like you combine
LEGO bricks.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from thread_task import Sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 movement_plan = (
 my_motor.move_to(360) +
 Sleep(5) +
 my_motor.move_to(0, speed=100, ramp_up=90, ramp_down=90, brake=True) +
 Sleep(0.5) +
 my_motor.stop_as_task(brake=False)
)

 movement_plan.start()
 print('movement has been started')

 movement_plan.join()
 print('movement has been finished')

Some remarks:

	operator + combines two Task objects. Here we combine multiple
Task objects and the resulting Task object is named
movement_plan.

	Starting the Task object happens in the blink of an eye even when
the movement needs a number of seconds.

	The program joins the movement_plan, which says: it waits until
the movement_plan has finished.

	movement_plan first moves the motor to position 360°, then it
sleeps for five sec., then it moves the motor back to its original
position.

	The first movements ends with a free floating motor, the second
one with activated brake, which is released 0.5 sec. later.

	Explicitly setting brake=False in method stop_as_task is not
needed, this is the default.

	You can manually move the motor in the first sleeping
timespan. Try that, it will not prevent the motor from moving back
to its original position.

	The first movement moves with default speed of 10%, the second one
moves with maximum speed.

	Joining allows to do the second printing after movement_plan’s
end.

The output:

movement has been started
movement has been finished

We modify this program:

from thread_task import Sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 movement_plan = (
 my_motor.move_to(360) +
 Sleep(5) +
 my_motor.move_to(0, speed=100, ramp_up=90, ramp_down=90, brake=True) +
 Sleep(0.5) +
 my_motor.stop_as_task(brake=False)
)

 print('movement starts now')
 movement_plan.start(thread=False)

 print('movement has been finished')

Starting movement_plan with keyword argument thread=False makes
its execution more familiar. The program waits until the movement has
finished, then it continues with its next statement. The creation of
movement_plan with its two movements is not different from the
version above.

move_by

Method move_by() moves a motor by a given
angle. The API is very similar to method
move_to().

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 (
 my_motor.move_by(360, brake=True) +
 my_motor.move_by(-360)
).start(thread=False)

Some remarks:

	Programs should never end with any motor’s brake in active
state. This permanently would cost power until the motor is used
again or the LEGO brick shuts down. Therefore the default setting is
brake=False.

	Here the Task has no name, it’s a anonymous Task object.

The next program really does two things parallel. It plays the song
Frère Jacques and it moves the motor at port B forwards and
backwards.

import ev3_dc as ev3
from thread_task import Task, Repeated, Sleep
from time import sleep

my_motor = ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
)
my_jukebox = ev3.Jukebox(ev3_obj=my_motor)

t_song = my_jukebox.song(ev3.FRERE_JACQUES, volume=1)
t_movements = Repeated(
 my_motor.move_by(90) + my_motor.move_by(-90)
)
t = Task(t_movements.start) + t_song + Task(t_movements.stop)

t.start()

sleep(5)
t.stop()

sleep(2)
t.cont(thread=False)
print('all done')

Some remarks:

	my_motor and my_jukebox communicate with the same physical EV3
brick. This is, what ev3_obj=my_motor means.

	t_song is a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object.

	t_movements is a thread_task.Repeated [https://thread-task.readthedocs.io/en/latest/api_documentation.html#repeated]
object.

	t, which combines t_song and t_movements also is a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object, that can be started, stopped and continued.

	The timing is done by the song Frère Jacques. As long as it lasts, the motor moves
forwards and backwards.

	The movements are precise and smooth and have a measure of 90 degrees.

	Stopping t stops the song and the movement and continuing t
continues both.

	There is no setting of speed, ramp_up or ramp_down, this
program uses the defaults.

start_move_to

Method start_move_to() moves a motor to a given
position. But it does not control time. It’s movement ends after
undetermined time and the program can’t subsequently follow with the
next action.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

import ev3_dc as ev3
from time import sleep

my_motor = ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
)

my_motor.start_move_to(90)
sleep(5)
my_motor.start_move_to(0)

Some remarks:

	The motor positions are relative to the position from where
instance my_motor of class Motor was
created. From then on class Motor remembers this position as its
zero point.

	Again you can use the timespan between the two movements and move the
motor by hand. Class Motor will realize the manual movement and
will correctly move the motor back to its zero position.

	Modify the program and set brake=True in the first
movement. This activates the brake and prevents manual movements.

	Method start_move_to does not return a thread_task.Task object.
It is an ordinary method, it just starts the movement.

	The timing depends on the suggestion, that a movement of 90° needs
less than 5 sec. of time. Method start_move_to is not time
controlled, which makes it different from method move_to.

start_move_by

Method start_move_by() relates to method
move_by() as method
start_move_to() relates to method
move_to(). It starts a movement without any
time control. A program, which needs to know, if the movement still is
in progress, can use property busy.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 my_motor.start_move_by(360, brake=False)
 print('movement has been started')

 while my_motor.busy:
 sleep(.1)

 print(f'movement has finished at position {my_motor.position}°')

Some remarks:

	The motor does a movement by 360° without time control.

	The time control is done by the while loop.

	Instead of coding the time control this way, think about using
method move_by().

Timed and Smooth Motor Movements

move_for

Method move_for() returns a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object. It does not set the angle of a movement. Instead it sets its
duration. The name is meant as: move for a defined duration.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 t = my_motor.move_for(
 3,
 speed=20,
 ramp_up_time=0.3,
 ramp_down_time=0.3
) + my_motor.move_for(
 3,
 speed=20,
 direction=-1,
 ramp_up_time=0.3,
 ramp_down_time=0.3
)
 t.start()
 print('movement has been started')

 sleep(2)
 t.stop()

 sleep(3)
 t.cont(thread=False)

 print(f'movement has finished at position {my_motor.position}°')

Some remarks:

	As in some examples above, this program schedules two movements,
forwards and backwards.

	After two seconds, during the first movement, task t is stopped and
continued three seconds later. After the continuation it absolves
the last second forwards and then the three seconds backwards.

	Compared with the examples above, here the duration of the task is
precisely determined. It lasts exactly six seconds. If stopped and
continued, the timespan of the interruption is added on top.

start_move_for

Method start_move_for() has the same argument
signature as method move_for, but it directly starts the movement
and does not return a thread_task.Task [https://thread-task.readthedocs.io/en/latest/api_documentation.html#task]
object.

Take an USB cable and connect your EV3 brick with your computer.
Connect a motor (medium or large) with PORT B, then start this
program.

from time import sleep
import ev3_dc as ev3

with ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
) as my_motor:
 my_motor.start_move_for(
 3,
 speed=20,
 ramp_up_time=0.4,
 ramp_down_time=0.4
)
 sleep(3)
 print(f'movement has finished at position {my_motor.position}°')

Unlimited Motor Movements

Another operating mode of a motor may be to start and steadily run it
until something interrupts or stops it. If you like to do so, use
methods start_move() and
stop().

Connect your EV3 brick with your computer via USB, connect a motor
(medium or large) with PORT B, then start this program.

import ev3_dc as ev3
from time import sleep

my_motor = ev3.Motor(
 ev3.PORT_B,
 protocol=ev3.USB
)
my_motor.verbosity = 1
my_motor.sync_mode = ev3.STD

my_motor.start_move()
sleep(1)
my_motor.start_move(direction=-1)
sleep(1)
my_motor.stop()

Some remarks:

	No speed was set, therefore the default speed is used.

	Each movement would last for unlimited time, if not interrupted.

	Interrupting a movement by a next one with significant different
speed means mechanical stress for the motor.

	We want analyze the communication, therefore we set verbosity = 1.

	sync_mode = ev3.STD prevents from needless replies because
protocol USB would default to sync_mode = ev3.SYNC, which
replies all requests.

The output:

08:30:44.141158 Sent 0x|15:00|2C:00|80|00:00|AF:00:02:0A:81:64:83:FF:FF:FF:7F:00:00:A6:00:02|
08:30:45.143264 Sent 0x|15:00|2D:00|80|00:00|AF:00:02:36:81:64:83:FF:FF:FF:7F:00:00:A6:00:02|
08:30:46.145253 Sent 0x|09:00|2E:00|80|00:00|A3:00:02:00|

Some remarks:

	The first direct command starts the motor. It consists from two
operations: opOutput_Time_Speed and opOutput_Start.

	The second command interrupts the current motor movement and starts a new
movement in opposite direction.

	The third command stops the motor movement.

Two Wheel Vehicle

TwoWheelVehicle is a subclass of
EV3. You can use it for synchronized movements of
two motors. You need no knowledge of direct command syntax. Class
TwoWheelVehicle uses thread_task [https://thread-task.readthedocs.io/en/latest], which allows to move
a vehicle parallel to other activities.

TwoWheelVehicle tracks the movements of the
vehicle by tracking the motor movements of its two wheels. This allows
to ask for the current position and the current orientation of the
vehicle.

Calibration

Class TwoWheelVehicle does the tracking by frequently reading the
current motor positions of both wheels and then updating the vehicle’s
position. This works fine if the steps between the recalculations are
small (small deltas of angle) or if the motor movements inbetween are
steady. This kind of calculation needs two precise informations:

	the wheel’s radius and

	the wheel’s tread, which is the track width of the two drived
wheels.

Therefore we start with two small programs, which allow to determine
first the radius, then the tread.

Determine the wheel’s radius

Construct a vehicle with two drived wheels, connect your EV3 brick and
your computer via WiFi, replace the MAC-address by the one of your EV3
brick, connect the left wheel motor (medium or large) with PORT A and
the right wheel motor with PORT D. Measure the diameter of the drived
wheels and take half of the diameter as value of radius_wheel (in
meter). Then start this program.

import ev3_dc as ev3

with ev3.TwoWheelVehicle(
 0.0210, # radius_wheel_measured
 0.1224, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99',
) as my_vehicle:
 my_vehicle.drive_straight(2.).start(thread=False)

	Some remarks:

	
	If you don’t own a WiFi dongle, use protocol BLUETOOTH instead.

	If your vehicle circles clockwise on place, add
my_vehicle.polarity_right = -1 to your code.

	If your vehicle circles anticlockwise on place, add
my_vehicle.polarity_left = -1 to your code.

	If your vehicle moves backwards, add my_vehicle.polarity_left = -1
and my_vehicle.polarity_right = -1 to your code.

	Measure the real distance of your vehicle’s movement, then do these steps:

	Calclulate \(radius_wheel_{effective} = radius_wheel_{measured} \times \frac{real_distance}{2\,m}\).

	In the program code replace \(radius_wheel_{measured}\) by \(radius_wheel_{effective}\).

	Restart the program and again measure the distance of the movement. Now it
should be close to \(2.00\,m\).

	The last code line looks a bit strange. First we call method
drive_straight(), which returns an
object. Then we call method start() of
this object and set its keyword argument thread to value False.

Determine the wheel’s tread

Now you know the effective radius of your vehicle’s wheels but you
need to know the effective width of the vehicle’s tread too. Replace
radius_wheel by your effective value, measure the track width of your
vehicle and take it as the tread value, then start the
following program and count the circles.

import ev3_dc as ev3

with ev3.TwoWheelVehicle(
 0.0210, # radius_wheel
 0.1224, # tread_measured
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99',
) as my_vehicle:
 my_vehicle.drive_turn(3600, 0.0).start(thread=False)

	Some remarks:

	
	The vehicle circles anticlockwise because this is the positive
direction of rotation.

	3600 degrees means 10 full circles. You will measure something
different. Multiply the number of full circles by 360 degrees and
add the fraction of the last circle (in degrees). This is the
\(real_angle\) of the rotation. Then do:

	Calclulate \(tread_{effective} = tread_{measured} \times
\frac{3600 °}{real_angle}\).

	In the program code replace the value \(tread_{measured}\)
by the value \(tread_{effective}\).

	Restart the program and again measure the total angle of the
rotations. Now it should be close to 10 full circles or
\(3600 °\).

	The precision depends on the tyres. If you use wheels with wide
base tyres, then the calibration is less exact. From situation to
situation it will be a different location of the contact face,
where the grip occurs, which says: the tread width varies.

Precise Driving

Two methods drive_straight() and
drive_turn() allow to specify a
series of movements, which the vehicle will follow. Maybe you know
turtle [https://docs.python.org/3/library/turtle.html#turtle.home]
from the standard python library. Here is a robotic pendant.

Define a Parcours

Connect your EV3 brick and your computer via WiFi, connect the left
wheel motor (medium or large) with PORT A and the right wheel motor
with PORT D, replace the values of radius_wheel and tread with the
values from your calibration, then start this program:

import ev3_dc as ev3

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI
) as my_vehicle:
 parcours = (
 my_vehicle.drive_straight(0.5) +
 my_vehicle.drive_turn(120, 0.0) +
 my_vehicle.drive_straight(0.5) +
 my_vehicle.drive_turn(120, 0.0) +
 my_vehicle.drive_straight(0.5) +
 my_vehicle.drive_turn(120, 0.0)
)
 parcours.start(thread=False)

Some remarks:

	The parcours builds an equilateral triangle with a side length of
half a meter.

	The program does not start six single movements, it instead
defines a parcours and then starts the driving by starting the
parcours.

	Method drive_turn is called with two arguments, the first one
sets the angle, the second one the radius. Here the radius is
zero, therefore the vehicle turns on place. Please replace the
radius with a positive value greater than zero and start the
program again.

	Positive values of drive_turn’s angle mean turn to the left,
negative values mean turn to the right. Please change the signs of
the three angles and start the program again. Then the triangle
will be drived clockwise.

Sensor controlled Driving

This example is a more demanding one. It demontrates how to control a
thread task by calling its methods stop and cont and how to do
this inside a thread task.

Modify your vehicle and place an infrared sensor on it, which directs
forwards. Connect the infrared sensor with port 2, then connect your
EV3 brick and your computer with the WiFi and start this program:

import ev3_dc as ev3
from thread_task import (
 Task,
 Repeated,
 Periodic,
 STATE_STARTED,
 STATE_FINISHED,
 STATE_STOPPED,
)

with ev3.TwoWheelVehicle(
 0.0210, # radius_wheel
 0.1224, # tread
 protocol=ev3.WIFI,
 speed=40
) as vehicle:
 infrared = ev3.Infrared(ev3.PORT_2, ev3_obj=vehicle)

 parcours = (
 Repeated(
 vehicle.drive_turn(360, 0.2) +
 vehicle.drive_turn(-360, 0.2),
 num=2
)
)

 def keep_care():
 curr_state = parcours.state
 if curr_state == STATE_FINISHED:
 return True # all done

 dist = infrared.distance
 if (
 curr_state == STATE_STARTED and
 (dist is not None and dist < 0.1)
):
 parcours.stop()
 elif (
 curr_state == STATE_STOPPED and
 (dist is None or dist >= 0.1)
):
 parcours.cont()

 return False # call me again

 (
 Task(parcours.start) +
 Periodic(
 0.1, # interval
 keep_care
)
).start(thread=False)

Some remarks:

	the parcours is a lying eight, build from two circles and wrapped
in a Repeated, which makes the vehicle to drive it two times. This
says: the vehicle drives two times alongside a lying eight.

	function keep_care controls the vehicle’s movement and it does
three things:

	it tests if the vehicle already has finished the parcours. If
so, it ends the Periodic, which called it.

	it tests if the vehicle currently is driving (STATE_STARTED) though
there is a barrier close in front of the sensor. If so, it stops
the driving (read stopping [https://thread-task.readthedocs.io/en/latest/examples.html#stopping]
for the details).

	it tests if the vehicle currently is stopped (STATE_STOPPED)
though the infrared sensor does not see something closer than
0.1 m. If so, it lets the vehicle continue its movement (read
continue [https://thread-task.readthedocs.io/en/latest/examples.html#continue]
for the details).

	to understand the details of function keep_care, you need to
understand, how a Periodic works (read Periodic actions [https://thread-task.readthedocs.io/en/latest/examples.html#periodic-actions]
for the details).

	Task(parcours.start) starts the parcours in its own thread, which says: driving
the parcours and reading the sensor happen parallel in different threads.

	the Periodic calls function keep_care ten times per second, which is often
enough to stop the vehicle before it collides with a barrier.

Plotting the Energy Consumption

The option of doing multiple things parallel opens a lot of
perspectives. As an example we track the energy consumption of a
vehicle by repeatedly reading its battery state. We will realize, that
the battery state is not precisely the current one, instead it shows
medium values over some time, therefore the result will be not more
than reasonable. This example uses module matplotlib, which you need
to have installed.

Connect your EV3 brick and your computer via WiFi, connect the left
wheel motor (medium or large) with PORT A and the right wheel motor
with PORT D, replace the values of radius_wheel and tread with the
values from your calibration, then start this program:

import matplotlib.pyplot as plt
import datetime
from thread_task import Periodic, Task, Sleep
import ev3_dc as ev3

times = []
powers = []

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 speed=40
) as vehicle:

 def track_power():
 '''
 determine current power consumption
 '''
 battery = vehicle.battery
 times.append(datetime.datetime.now())
 powers.append(battery.voltage * battery.current)

 t_track = Periodic(0.1, track_power)

 t_parcours = (
 Sleep(5) +
 vehicle.drive_straight(0.5) +
 Sleep(5) +
 vehicle.drive_turn(120, 0.0) +
 Sleep(5) +
 vehicle.drive_straight(0.5) +
 Sleep(5) +
 vehicle.drive_turn(120, 0.0) +
 Sleep(5) +
 vehicle.drive_straight(0.5) +
 Sleep(5) +
 vehicle.drive_turn(120, 0.0) +
 Sleep(10)
)

 (
 Task(t_track.start) +
 t_parcours +
 Task(t_track.stop)
).start(thread=False)

 # plot powers over times
 plt.plot(times, powers)
 plt.gcf().autofmt_xdate()
 plt.show()

Some remarks:

	The parcours includes timespans with no action. We want to
see how the energy consumption differs between action and rest.

	Function track_power protocols a single datetime and power [W]
in the corresponding lists times and powers.

	After started, t_track would run forever and protocol the
current power consumption 10 times per second. Therefore t_track
is stopped, when the vehicle finished the parcours.

	Task(t_track.start) starts t_track in its own thread. This
says: t_track and t_parcours run parallel.

	This pattern is typical for executing two thread tasks parallel,
when one of the thread tasks sets the timing by its duration.

My program plotted this figure:

[image: _images/power_consumption.png]
Some remarks:

	We expect the highest energy consumtion at the beginning of the
movements, when the vehicle accelerates and we expect an immediate
fallback to its original value, when the movements end.

	Instead we see a flattened increase and decrease with a flattening
over a few seconds. We see the six movements as peaks, but the
form of the peaks does not show the real energy consumption.

	Our conclusion: the battery state shows a kind of medium values
over a timespan of a few seconds.

Tracking the vehicle’s Position and Orientation

Class TwoWheelVehicle tracks the vehicle’s position and orientation.
Property position tells the current
values. Alternatively, you can use
tracking_callback to handle the
information about the current position and orientation.

Print Current Position

Connect your EV3 brick and your computer via WiFi, replace the
MAC-address by the one of your EV3 brick, connect the left wheel motor
(medium or large) with PORT A and the right wheel motor with PORT D,
replace the values of radius_wheel and tread with the values from
your calibration, then start this program:

import ev3_dc as ev3

def print_position(pos: ev3.VehiclePosition) -> None:
 '''
 prints current position and orientation of the vehicle
 '''
 print(
 f'\rx: {pos.x:5.2f} m, y: {pos.y:5.2f} m, o: {pos.o:4.0f} °',
 end=''
)

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99',
 speed=20,
 ramp_up=60,
 ramp_down=60,
 tracking_callback=print_position
) as my_vehicle:
 parcours = my_vehicle.drive_turn(360, 0.2)
 parcours.start(thread=False)
 print('\n' + '-' * 14, 'done', '-' * 13)
 print(my_vehicle.position)

Some remarks:

	This parcours drives the vehicle a single cirle in anticlockwise
direction.

	The vehicle’s tracking uses the middle between the two drived
wheels as point of reference and measures in meters.

	The x-axes points in direction of the vehicle’s starting
orientation. The y-axes points to the left of its starting
orientation. The starting position is, as you may have expected,
(0.0, 0.0).

	Function print_position prints the values of the x- and
y-coordinates and the vehicle’s orientation whenever it is
called. It repeatedly prints the same line. This is done by
printing carriage return [https://en.m.wikipedia.org/wiki/Carriage_return] (“\r”) in
front of the printed line and ending the line without a newline
(“\n”).

	After the parcours has been finished, property position is
printed, which demonstrates the alternative way to get the
vehicle’s current position.

	This construction of the TwoWheelVehicle object uses some more
keyword arguments than you have seen before. Beneath
tracking_callback there also is
set a higher speed and higher
values for ramp_up and
ramp_down.

Visualize the Movement

We use matplotlib [https://matplotlib.org/] to visualize the
vehicle’s movement. Most of the next program are details of this
tool. Some of you already know motplotlib and will find some details
to modify. For some of you this will be the first contact with the
tool, then take is as it is. Some of you will know the standard python
turtle module and we already mentioned it. This program comes even
closer to this module and will give some of you a familiar warm
feeling.

You need to have matplotlib installed. If so, connect your EV3 brick
and your computer via WiFi, connect the left wheel motor (medium or
large) with PORT A and the right wheel motor with PORT D, replace the
values of radius_wheel and tread with the values from your
calibration, then start this program:

import matplotlib.pyplot as plt
import ev3_dc as ev3

plt.ion()
fig, ax = plt.subplots()
ax.figure.set_size_inches(5, 5)
ax.grid(True)

ax.set_xlim([-1.1, 1.1])
ax.set_xticks([-1, -0.5, 0.5, 1])
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')

ax.set_ylim([-1.1, 1.1])
ax.set_yticks([-1, -0.5, 0.5, 1])
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')

x_values = [0.0,]
y_values = [0.0,]
pos = ax.plot(0.0, 0.0, 'ro')[0]
line = ax.plot(x_values, y_values, 'r-')[0]
fig.canvas.draw()

def plot_curr_pos(curr_pos: ev3.VehiclePosition):
 '''
 updates pos in plot
 '''
 x_values.append(curr_pos.x)
 y_values.append(curr_pos.y)
 line.set_xdata(x_values)
 line.set_ydata(y_values)
 pos.set_xdata(curr_pos.x)
 pos.set_ydata(curr_pos.y)
 fig.canvas.flush_events()

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 speed=50,
 tracking_callback=plot_curr_pos
) as vehicle:
 parcours = (
 vehicle.drive_straight(0.5) +
 vehicle.drive_turn(270, 0.5) +
 vehicle.drive_straight(1.0) +
 vehicle.drive_turn(-270, 0.5) +
 vehicle.drive_straight(0.5)
)
 parcours.start(thread=False)

Some remarks:

	The program consists of three parts. The first does the setup of
the plot, the second defines a function plot_curr_pos, which
updates the plot and the last part lets the vehicle drive a
parcours.

	Setting keyword argument tracking_callback=plot_curr_pos is an
important detail. This tells the
TwoWheelVehicle object to call function
plot_curr_pos whenever it reads the current position of the
vehicle’s motors.

	The parcours lets the vehicle drive a lying eight and start from
the figure’s center. It starts driving alongside the x-axis. After
half a meter it turns 270 ° to the left side until it reaches the
y-axis, etc.

	Play around and modify the parcours. Let the vehicle drive your
geometric favorites.

Regulated Movements

A parcours, which the vehicle follows, is one option for driving a
vehicle. Another option are regulated movements, where sensors or a
person take over the vehicle’s control. In a car the instruments of
regulation are the steering wheel, the gas pedal and others. Class
TwoWheelVehicle provides method
move() for this and method move
knows only two arguments, speed and turn. The sign of argument speed
sets the movement’s direction (forwards or backwards). Argument turn
is a bit more complicated. It may vary between -200 and 200. Here are
explanations for some special values of turn:

	-200: circle right on place

	-100: turn right with unmoved right wheel

	0: straight

	100: turn left with unmoved left wheel

	200: circle left on place

Now let’s demonstrate it with a program. Connect your EV3 brick and
your computer via WiFi, replace the MAC-address by the one of your EV3
brick, connect the left wheel motor (medium or large) with PORT A and
the right wheel motor with PORT D, replace the values of
radius_wheel and tread with the values from your calibration, then
start this program in a terminal (not in an interactive python shell):

import curses
import ev3_dc as ev3

def main(stdscr) -> None:
 '''
 controls terminal and keyboard events
 '''
 def react():
 '''
 reacts on keyboard arrow key events by modifying speed and turn
 '''
 nonlocal speed, turn
 if c == curses.KEY_LEFT:
 turn += 5
 turn = min(turn, 200)
 elif c == curses.KEY_RIGHT:
 turn -= 5
 turn = max(turn, -200)
 elif c == curses.KEY_UP:
 speed += 5
 speed = min(speed, 100)
 elif c == curses.KEY_DOWN:
 speed -= 5
 speed = max(speed, -100)

 # initialize terminal

 stdscr.clear()
 stdscr.refresh()
 stdscr.addstr(0, 0, 'use Arrows to navigate your vehicle')
 stdscr.addstr(1, 0, 'pause your vehicle with key <p>')
 stdscr.addstr(2, 0, 'terminate with key <q>')

 # control vehicle movement and visualize it

 speed = 0
 turn = 0
 with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as my_vehicle:
 while True:
 c = stdscr.getch() # catch keyboard event
 if c in (
 curses.KEY_RIGHT,
 curses.KEY_LEFT,
 curses.KEY_UP,
 curses.KEY_DOWN
):
 react()
 my_vehicle.move(speed, turn) # modify movement
 stdscr.addstr(
 4,
 0,
 f'speed: {speed:4d}, turn: {turn:4d} '
)
 elif c == ord('p'):
 speed = 0
 turn = 0
 my_vehicle.stop() # stop movement
 pos = my_vehicle.position
 stdscr.addstr(
 4,
 0,
 f'x: {pos.x:5.2f} m, y: {pos.y:5.2f} m, o: {pos.o:4.0f} °'
)
 elif c in (ord('q'), 27):
 my_vehicle.stop() # finally stop movement
 break

curses.wrapper(main)

Some remarks:

	This program is a simple remote control, that uses the arrow keys
of the terminal to modify the vehicle’s movement. Key <p> pauses
the movement, key <q> quits it.

	Python standard module curses [https://docs.python.org/3/library/curses.html] is kind of
old-fashioned because it uses a terminal instead of a graphical
interface.

	curses takes the control over the terminal and the
keyboard. With stdscr.getch() it catches the keyboard events and
reacts on the arrow keys.

	Function react does the real stuff. It modifies either
speed or turn.

	This program uses two methods of class TwoWheelVehicle: move
and stop.

	Method move is called whenever an array key event occurs. The
next movement replaces (or interrupts) the last one.

	The movement seems to be smooth even when speed and turn
change in steps of 5.

	Whenever the movement pauses, the program shows the vehicle’s
current position, which demonstrates, that the tracking works with
regulated movements too.

File System

FileSystem is a subclass of
EV3. It uses system commands and allows to
operate on EV3’s file system (read LEGO’s Communication Developer Kit [https://www.lego.com/cdn/cs/set/assets/blt6879b00ae6951482/LEGO_MINDSTORMS_EV3_Communication_Developer_Kit.pdf]
for the details). You can read, write and delete files and
directories. Please take care, you can damage the software of your EV3
brick.

Method list_dir

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

def print_header(type: str):
 print()
 if type == 'rsf':
 print('robot sound file size (bytes) md5-checksum')
 elif type == 'rgf':
 print('robot graphics file size (bytes) md5-checksum')
 elif type == 'rbf':
 print('robot brick file size (bytes) md5-checksum')
 print('-'*75)

def print_table(files: tuple, type: str):
 header_printed = False
 for file in files:
 if file[0].endswith('.' + type):
 if not header_printed:
 print_header(type)
 header_printed = True
 print(
 '{:27s} {:12d} {:12s}'.format(*file)
)

folders, files = my_ev3.list_dir('/home/root/lms2012/sys/ui')
print_table(files, 'rsf')
print_table(files, 'rgf')
print_table(files, 'rbf')

Some remarks:

	This program reads files and subfolders in directory
/home/root/lms2012/sys/ui. Then it prints the sound-, graphics-
and brick-files as tables.

	The operating system of the EV3 brick is Unix, therefore use
slashes, not backslashes when writing the path of a directory.

	You can use absolute or relative paths, releative paths are
relative to /home/root/lms2012/sys, e.g. our path could also be
written as ./ui.

	files is a tuple of tuples. Per file, we get three data:

	name of the file,

	size of the file,

	md5 checksum of the file’s data.

	We ignore subfolders, because in this directory, there is none.

The output:

robot sound file size (bytes) md5-checksum

Startup.rsf 3109 7BE0A201F57917BC0DDE508E63DD7AD8
PowerDown.rsf 7939 2381EF46C5166BFF0B5852369E5A2CC7
OverpowerAlert.rsf 8553 BE802DF67CBBC4E4A40C223BFFF4C14A
GeneralAlarm.rsf 7300 A40C190AF86C8FA9A7FE9143B36B86EC
DownloadSucces.rsf 6599 681C88B5930DE152C0BB096F890C492F
Click.rsf 173 A16F9F1FDDACF56EDF81B4CD968826B4

robot graphics file size (bytes) md5-checksum

settings_screen.rgf 600 55186477FDBAF838AEDA09BFDBFAABA2
screen.rgf 2049 ACE80443D1FA8736231BA21D63260CA4
playrecent_screen.rgf 600 CDBAE801B780484D80DA95538CF867C2
mindstorms.rgf 302 BCED9CC85FCB72259F4901E836AED8DF
file_screen.rgf 600 EFF6FAE6C487828734800AFB912DD700
apps_screen.rgf 600 19EA377DAD1869512B3759E28B6DECCD
Ani1x.rgf 42 AB225E46367E84D5FC23649EC4DE1CE9
144x82_POP4.rgf 1478 7E255363590442E339F93CBDAF222CA1
144x65_POP3.rgf 1172 2BED43A3D00A5842E4B91E136D232CEA

robot brick file size (bytes) md5-checksum

ui.rbf 5030 6F46636743FBDE68B489071E590F0752

Now we come to directories. The following program demonstrates, how to
recursively read a directory subtree.

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

def dir_recursive(path: str):
 folders, files = my_ev3.list_dir(path)
 for folder in folders:
 if folder in ('.', '..'):
 continue
 next_path = path + '/' + folder
 print(next_path)
 dir_recursive(next_path)

dir_recursive('/home')

This program recursively reads the /home folder, where Unix systems
hold the user-owned data. It prints all subfolders, but ignores files
inside the folders.

The output:

/home/root
/home/root/lms2012
/home/root/lms2012/tools
/home/root/lms2012/tools/WiFi
/home/root/lms2012/tools/Volume
/home/root/lms2012/tools/Sleep
/home/root/lms2012/tools/Brick Info
/home/root/lms2012/tools/Bluetooth
/home/root/lms2012/sys
/home/root/lms2012/sys/ui
/home/root/lms2012/sys/settings
/home/root/lms2012/sys/mod
/home/root/lms2012/sys/lib
/home/root/lms2012/source
/home/root/lms2012/prjs
/home/root/lms2012/prjs/BrkProg_SAVE
/home/root/lms2012/prjs/BrkProg_SAVE/CVS
/home/root/lms2012/apps
/home/root/lms2012/apps/Brick Program
/home/root/lms2012/apps/Brick Program/CVS
/home/root/lms2012/apps/IR Control
/home/root/lms2012/apps/IR Control/CVS
/home/root/lms2012/apps/Port View
/home/root/lms2012/apps/Port View/CVS
/home/root/lms2012/apps/Motor Control
/home/root/lms2012/apps/Motor Control/CVS

Some remarks:

	root is the only user on this Unix system.

	If you already worked on some projects and did run them on your EV3 brick, you will find them
in /home/root/lms2012/prjs.

	The sequence of subfolders is backward-sorted by name as is the sequence of files.

Method create_dir

Method create_dir() allows to create
directories in the filesystem of the EV3 brick.

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

dir = '/home/root/lms2012/prjs'
subdir = 'tmp'

read sub-directories
folders, files = my_ev3.list_dir(dir)
print('*** old ***')
for folder in folders:
 print(folder)

create directory
my_ev3.create_dir(dir + '/' + subdir)

read sub-directories
folders, files = my_ev3.list_dir(dir)
print('*** new ***')
for folder in folders:
 print(folder)

This program first reads the sub-directories of
/home/root/lms2012/prjs, then it creates directory
/home/root/lms2012/prjs/tmp and finally it again reads the
sub-directories of /home/root/lms2012/prjs.

There are a lot of restrictions for user root’s filesystem. E.g. you
are not allowed to create sub-directories in /home/root or
/home/root/lms2012. If you try to do that, the EV3 brick answers
with an error.

The output:

*** old ***
BrkProg_SAVE
..
.
*** new ***
BrkProg_SAVE
tmp
..
.

Indeed, after creating directory /home/root/lms2012/prjs/tmp there
is an additional sub-directory named tmp in
/home/root/lms2012/prjs.

If you start this program a second time, you will get an error because
you can’t create a directory that allready exists.

Method del_dir

Method del_dir() allows to delete
directories in the filesystem of the EV3 brick.

Connect your EV3 brick and your computer with an USB cable and replace
the MAC-address by the one of your EV3 brick. The following program is thought
to be executed after the one above:

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

dir = '/home/root/lms2012/prjs'
subdir = 'tmp'

read sub-directories
folders, files = my_ev3.list_dir(dir)
print('*** old ***')
for folder in folders:
 print(folder)

delete directory
my_ev3.del_dir(dir + '/' + subdir)

read sub-directories
folders, files = my_ev3.list_dir(dir)
print('*** new ***')
for folder in folders:
 print(folder)

The program is very similar to the one above, but it deletes a
directory instead of creating it.

The output:

*** old ***
BrkProg_SAVE
tmp
..
.
*** new ***
BrkProg_SAVE
..
.

Indeed, after deleting directory /home/root/lms2012/prjs/tmp there
is no more a sub-directory named tmp in
/home/root/lms2012/prjs.

And again, you can’t run this program a second time. If you do so, you
will get an error because you can’t delete a directory that doesn’t
exist.

If you need to delete non-empty directories, setting keword argument
secure=False allows to do so.

Method read_file

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick, then start this program:

import ev3_dc as ev3
from hashlib import md5

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

folder = '/bin'
filename = 'usb-devices'

read data from EV3 brick, calculate md5 and write data to local file
data = my_ev3.read_file(folder + '/' + filename)
print('md5-checksum (copy):', md5(data).hexdigest().upper())
with open(filename, 'w') as f:
 f.write(data.decode('utf-8'))

get md5 of the file from EV3 brick
subfolders, files = my_ev3.list_dir(folder)
for file in files:
 if file[0] == filename:
 print('md5-checksum (orig):', file[2])

This program reads file /bin/usb-devices from the EV3 brick and
writes a local copy. The file is part of the brick’s operating
system. It’s human readable because it is a bash-script [https://en.wikipedia.org/wiki/Bash_(Unix_shell)]. The correctness
of the reading is demonstrated by two md5-checksums [https://en.wikipedia.org/wiki/MD5], one from the original on the
EV3 brick, the other from the read data.

The output:

md5-checksum (copy): 5E78E1B8C0E1E8CB73FDED5DE384C000
md5-checksum (orig): 5E78E1B8C0E1E8CB73FDED5DE384C000

Method write_file

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick and start the following
program, that creates sub-directory and a file on the EV3 brick. It
writes some text into the file and it allows to test if the
md5-checksum is the correct one.

import ev3_dc as ev3
from hashlib import md5

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

dir = '/home/root/lms2012/prjs'
subdir = 'tmp'
filename = 'some.txt'
txt = 'This is some text.'
txt_bytes = txt.encode('utf-8')

md5-ckecksum of txt
print('md5-checksum (text):', md5(txt_bytes).hexdigest().upper())

create directory
my_ev3.create_dir(dir + '/' + subdir)

write txt into file
my_ev3.write_file(
 dir + '/' + subdir + '/' + filename,
 txt_bytes
)

md5-checksum of file
folders, files = my_ev3.list_dir(dir + '/' + subdir)
print('md5-checksum (file):', files[0][2])

delete directory
my_ev3.del_dir(dir + '/' + subdir, secure=False)

Some remarks:

	Method write-file accepts bytes not str, therefore we need to encode the text.

	Setting secure=False allows to delete the subdirectory with its content. This is
done at the end of the program.

The output:

md5-checksum (text): 5A42E1F277FBC664677C2D290742176B
md5-checksum (file): 5A42E1F277FBC664677C2D290742176B

Method copy_file

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick and start the following
program:

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

dir = '../prjs/tmp'
filename = dir + '/' + 'some.txt'
filename_copy = dir + '/' + 'copy.txt'
txt = 'This is some text.'

create directory
my_ev3.create_dir(dir)

write txt into file
my_ev3.write_file(filename, txt.encode('utf-8'))

copy file
my_ev3.copy_file(filename, filename_copy)

read directory's content
folders, files = my_ev3.list_dir(dir)
print('file size (bytes) md5-checksum')
print('-'*75)
for file in files:
 print(
 '{:27s} {:12d} {:12s}'.format(*file)
)

delete directory
my_ev3.del_dir(dir, secure=False)

Some remarks:

	This program works with relative paths.

	As above it creates a sub-directory /home/root/lms2012/prjs/tmp.

	File /home/root/lms2012/prjs/tmp/some.txt is created by method
write_file(), file
/home/root/lms2012/prjs/tmp/copy.txt is created by method
copy_file().

The output:

file size (bytes) md5-checksum

some.txt 18 5A42E1F277FBC664677C2D290742176B
copy.txt 18 5A42E1F277FBC664677C2D290742176B

As expected, both files have the same sizes and md5-checksums.

Method del_file

Method del_file() allows to delete single
files in the file-system of an EV3 brick. Be careful, when using it,
you can even delete files of the EV3 brick’s operating system.

Connect your EV3 brick and your computer with an USB cable. Replace
the MAC-address by the one of your EV3 brick and start the following
program:

import ev3_dc as ev3

my_ev3 = ev3.FileSystem(
 protocol=ev3.USB,
 host='00:16:53:42:2B:99',
)

dir = '../prjs/tmp'
filename = dir + '/' + 'some.txt'
filename_copy = dir + '/' + 'copy.txt'
txt = 'This is some text.'

create directory
my_ev3.create_dir(dir)

write txt into file
my_ev3.write_file(filename, txt.encode('utf-8'))

copy file
my_ev3.copy_file(filename, filename_copy)

delete file
my_ev3.del_file(filename)

read directory's content
folders, files = my_ev3.list_dir(dir)
print('file size (bytes) md5-checksum')
print('-'*75)
for file in files:
 print(
 '{:27s} {:12d} {:12s}'.format(*file)
)

delete directory
my_ev3.del_dir(dir, secure=False)

The program is very similar to the one above. It uses nearly all
methods of class FileSystem.

file size (bytes) md5-checksum

copy.txt 18 5A42E1F277FBC664677C2D290742176B

File some.txt has been deleted, only the copy did exist, when
list_dir() was called.

PID Controller

A PID controller [https://en.wikipedia.org/wiki/PID_controller]
implements a control loop mechanism, which applies a correction based
on a (p)roportional, an (i)ntegrative and a (d)erivative term. PID
controllers are widely used in industrial control systems.

Background

Let’s think of a system which is controlled by a single control
signal. E.g. the position of the gas pedal regulates the speed of a
car. Any normal car driver is not able to describe the dependency of
his car’s velocity from the position of the gas pedal. The only thing
he does: he changes the pedal’s position, when he wants to accelerate
or decelerate his car. If we try to analyze the dependency between the
gas pedal’s position and the car’s velocity, we will find it quite
complicated, the velocity depends on the position of the gas pedal and
on multiple other factors, e.g.:

	the slope of the road,

	the load of the car

	the current acceleration, e.g. at the beginning of the
acceleration phase, a car under full gas will have a low
speed. The opposite in case of deceleration: high speed combined
with low gas.

	the aerodynamic drag of the car, which depends on the car’s surface
form.

	the efficiency of the car’s motor.

	the mechanical and electronical mechanism, which connects the gas
pedal with the fuel injector and the motor electronics.

The parametrization of the controller does not need an analysis of
these dependencies (as the human driver does not need it). It instead
is based on practical experience and some simple rules of thumb.

Let’s take a look on the mechanism: The controller modifies a control
signal (e.g. the position of the gas pedal) in dependency of a
measurement (e.g. the car’s velocity). Using a controller needs a
sensor, which does the measurement and this measurement becomes the
controller’s input. The output of the controller, the signal,
regulates the process, which says it is used as an input argument of a
regulating function or method.

Let’s describe it as a formalism:

	In a setup step, a controller is parametrized.

	The parametrized controller is used inside a loop, where the following steps are
executed repeatedly:

	a measurement is done, which returns a value,

	the controller takes the measurement value as its single input
argument and returns a control signal.

	the control signal is used as an input argument of a regulation.

With this formalism the PID controller is able to adjust the control
signal and this adaption often is astonishing close to the reaction of
an intelligent observer. We take a closer look on the setup step,
which needs:

	A setpoint, which is the target measurement value (e.g. the
target velocity of a car),

	A gain, which describes the (proportional) relation between the
error (deviation of the measured value from the setpoint) and
the control signal (e.g. the position of the gas pedal). High
gains help for fast adaption to the setpoint, but produce
fluctuations.

	An integration time (optional), which approx. is the time to
eliminate deviations from the past. Be carefull, high integration
times produce fluctuations.

	A deviation time (optional), which approx. is the forecast
time. This forecast says: if the car already accelerates, the gas
pedal may stay unchanged, even when the velocity still is lower
than the setpoint. A high forecast time helps to prevent nervous
changes of the gas but reacts sensible on measurement noise. If
the velocity measurement shows random fluctuations, the forecast’s
result will change to the opposite and will itself produce a
nervous driving style.

Determing the setpoint often is easy, the rest needs some experience
and/or trial and error. Probably you will fastly learn to do it step
by step with some simple rules of thumb.

Close but not too Close

A few lines of code are worth a thousand words. We start with a quite
simple regulation. A vehicle drives towards a barrier and a controller
has to regulate this process. The measurement value is the current
distance from the barrier, the control signal ist the vehicle’s
speed. The setpoint is the target distance from the barrier and it
is obvious, what the controller has to do. If the current distance is
higher than the setpoint, then the speed has to be positive. If the
distance is too small, then the velocity has to be negative. The
controller needs not more than a setpoint and a gain and is a P
controller (a proportional controller without any intergational or
deviative term).

Construct a vehicle with two drived wheels, connect the left wheel
motor (medium or large) with PORT A and the right wheel motor with
PORT D. Place an ifrared sensor on your vehicle, which directs
forwards. Connect the infrared sensor with port 2, then connect your
EV3 brick and your computer via WiFi, replace the MAC-address by the
one of your EV3 brick. If your vehicle is not calibrated, then measure
the diameter of the drived wheels and take half of the diameter as
value of radius_wheel (in meter). Then start this program.

import ev3_dc as ev3
from time import sleep

proportional controller for vehicle speed
speed_ctrl = ev3.pid(0.2, 100)

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as vehicle:
 infrared = ev3.Infrared(ev3.PORT_2, ev3_obj=vehicle)
 while True:
 dist = infrared.distance # read distance
 if dist is None:
 print('\n' + '**** seen nothing ****')
 vehicle.stop()
 break

 # get speed from speed controller
 speed = round(-speed_ctrl(dist))
 if speed > 100:
 speed = 100
 elif speed < -100:
 speed = -100

 vehicle.move(speed, 0)
 print(f'\rdistance: {dist:3.2f} m, speed: {speed:4d} %', end='')

 if speed == 0:
 break

 sleep(0.1)

	Some remarks:

	
	Line speed_ctrl = ev3.pid(0.2, 100) does the setup by calling
pid(). setpoint is set to 0.2 m, gain is
set to 100. The rule of thumb for setting gain: the sensor’s
measurement accuracy is 1 cm, therefore a deviation of 1 cm
will result in a speed setting to 1 (percent of maximum speed).

	A setpoint of 0.2 m means: the vehicle adjusts to stand off
this distance.

	Line dist = infrared.distance does te measurement.

	Line speed = round(-speed_ctrl(dist)) calls the controller and
gets speed as its signal setting. This programs inverts the
signal because the controller regulates high values with small
signals which in our situation is counterproductive.

	The controller returns float values, but speed must be an integer.
This is why the program rounds the controller’s signal. It also
restricts the signal (speed) to the range, which method
move() accepts.

	Line print(f'\rdistance: {dist:3.2f} m, speed: {speed:4d} %',
end='') prints the measured value and the signal from the
controller. This helps to quantify the visual impression.

	A P controller is a quite simple thing. If you replace
speed_ctrl(dist) by 100 * (0.2 - dist) (or gain *
(setpoint - value)), you will see the very same behaviour of the
vehicle.

	The controller is called inside a loop and this loop sleeps 0.1
sec. between each of its cycles. This time step is small enough
to get the impression of a smooth adjustment.

	Make your own experience, vary the gain and vary the time steps
of the loop. High values of both result in overshooting and you
will see the vehicle oscillating around the setpoint.

Keep the Distance

We modify the program above. Now we add an integrative term to the
controller, which makes it a PI controller. We want the vehicle to
adjust to a dynamic situation. The vehicle has to follow the movements
of the barrier (e.g. your hand) in a constant distance.

The preparation is the same as above. Place your hand in front of the
infrared sensor, then start this program:

import ev3_dc as ev3
from time import sleep

PI controller for vehicle speed
speed_ctrl = ev3.pid(0.2, 500, time_int=5)

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as vehicle:
 infrared = ev3.Infrared(ev3.PORT_2, ev3_obj=vehicle)
 while True:
 dist = infrared.distance # read distance
 if dist is None:
 print('\n' + '**** seen nothing ****')
 vehicle.stop()
 break

 # get speed from speed controller
 speed = round(-speed_ctrl(dist))
 if speed > 100:
 speed = 100
 elif speed < -100:
 speed = -100

 vehicle.move(speed, 0)
 print(f'\rdistance: {dist:3.2f} m, speed: {speed:4d} %', end='')

 sleep(0.1)

Some remarks:

	A PI controller (here with an additional integrative term
time_int=5) helps to keep the distance at setpoint = 0.1
m, even when the barrier moves steady.

	A P controller would not accomplish this. Let’s say, the barrier
moves with a speed of 50 (percent of the vehicles maximum
speed). The P controller’s balance distance will be larger than
0.1 m. When we solve equation 50 = -500 * (0.1 - dist), we get
dist = 0.2. This says: balanced state (vehicle and barrier
move with the same speed) is reached at a distance of 0.20 m and
not at setpoint distance 0.1 m.

	Again my advice: make your own experience, play around, vary the
controller setup and compare the results.

Follow Me

We modify the program once again and add a second controller, which
controls argument turn.

The preparation is the same as above. Additionally use a beacon,
select its channel 1 and switch it on. Place the beacon in front of
the infrared sensor, then start this program (switching off the beacon
ends this program):

import ev3_dc as ev3
from time import sleep

speed_ctrl = ev3.pid(0.1, 500, time_int=5)
turn_ctrl = ev3.pid(0, 10)

with ev3.TwoWheelVehicle(
 0.01518, # radius_wheel
 0.11495, # tread
 protocol=ev3.WIFI,
 host='00:16:53:42:2B:99'
) as vehicle:
 infrared = ev3.Infrared(ev3.PORT_2, ev3_obj=vehicle, channel=1)
 while True:
 beacon = infrared.beacon # read position of infrared beacon
 if beacon is None:
 print('\n' + '**** lost connection ****')
 vehicle.stop()
 break

 # get speed from speed controller
 speed = round(-speed_ctrl(beacon.distance))
 if speed > 100:
 speed = 100
 elif speed < -100:
 speed = -100

 # get turn from turn controller
 turn = round(turn_ctrl(beacon.heading))
 if turn > 200:
 turn = 200
 elif turn < -200:
 turn = -200

 vehicle.move(speed, turn)
 print(
 f'\rspeed: {speed:4d} %, turn: {turn:4d}',
 end=''
)

 sleep(0.1)

Some remarks:

	This program uses two controllers, PI controller speed_ctrl
regulates argument speed, P controller turn_ctrl regulates
argument turn.

	The balanced state of argument turn is zero. This is a clear hint
to use a simple P controller.

	As before, vary the setup, probably you will find a
parametrization, which fits better than mine and results in a
faster or smoother or even better adjustment.

API documentation

LEGO EV3 direct commands

Static methods

LCX

Translates an integer into a direct command compatible number with
identification byte. It is used for input arguments of operations,
which are not read from global or local memory. Dependent from the
value an LCX will be a byte string of one, two, three or 5 bytes
length.

	
ev3_dc.LCX(value: int) → bytes

	create a LC0, LC1, LC2, LC4, dependent from the value

	Positional Argument

	
	value

	integer value as argument of a direct command

LCS

Adds a leading identification byte and an ending zero terminator
to an ascii string and returns a byte string.

	
ev3_dc.LCS(value: str) → bytes

	pack a string into a LCS by adding a leading and a trailing byte

	Positional Argument

	
	value

	string as argument of a direct command

LVX

Translates a local memory adress into a direct command compatible
format with identification byte. This can be used for input or output
arguments of operations.

	
ev3_dc.LVX(value: int) → bytes

	create a LV0, LV1, LV2, LV4, dependent from the value

	Positional Argument

	
	value

	position (bytes address) in the local memory

GVX

Translates a global memory adress into a direct command compatible
format with identification byte. This can be used for input or output
arguments of operations.

	
ev3_dc.GVX(value: int) → bytes

	create a GV0, GV1, GV2, GV4, dependent from the value

	Positional Argument

	
	value

	position (bytes address) in the global memory

port_motor_input

Allows to use well known motor ports of output commands for input commands too.

	
ev3_dc.port_motor_input(port_output: int) → bytes

	get corresponding input motor port (from output motor port)

	Positional Argument

	
	port_output

	motor port number

pid

pid is a PID controller [https://en.wikipedia.org/wiki/PID_controller]. It continuously
adjusts a system by periodically calculating a signal value from a
measured variable. Function pid() does the setup and returns the
controller, which is a function (with this signature: signal(value:
float) -> float).

	
ev3_dc.pid(setpoint: float, gain: float, *, time_int: float = None, time_der: float = None) → Callable

	Parametrize a new PID controller (standard form)

A PID controller derives a control signal from a measurement value

Mandatory positional arguments

	setpoint

	target value of the measurement

	gain

	proportional gain,
high values result in fast adaption,
but too high values produce oscillations or instabilities

Optional keyword only arguments

	time_int

	time of the integrative term [s] (approx. the time for elimination),
compensates errors from the past (e.g. steady-state error)
small values produce oscillations or instabilities
and increase settling time

	time_der

	time of the derivative term [s] (approx. the forecast time),
damps oszillations, decreases overshooting and reduces settling time
but reacts sensitive on noise

	Returns

	function signal(value: float) -> float

Classes

EV3

EV3 establishes a connection between your computer and the EV3
device. It allows to send direct and system commands and receive their
replies.

	
class ev3_dc.EV3(*, protocol: str = None, host: str = None, ev3_obj: Optional[ev3_dc.ev3.EV3] = None, sync_mode: str = None, verbosity=0)

	communicates with a LEGO EV3 using direct or system commands

Establish a connection to a LEGO EV3 device

Keyword arguments (either protocol and host or ev3_obj)

	protocol

	‘Bluetooth’, ‘USB’ or ‘WiFi’

	host

	MAC-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	existing EV3 object (its connections will be used)

	sync mode (standard, asynchronous, synchronous)

	STD - if reply then use DIRECT_COMMAND_REPLY and
wait for reply.

ASYNC - if reply then use DIRECT_COMMAND_REPLY,
but never wait for reply (it’s the task of the calling program).

SYNC - Always use DIRECT_COMMAND_REPLY and wait for reply,
which may be empty.

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
send_direct_cmd(ops: bytes, *, local_mem: int = 0, global_mem: int = 0, sync_mode: str = None, verbosity: int = None) → bytes

	Send a direct command to the LEGO EV3

Mandatory positional arguments

	ops

	holds netto data only (operations), these fields are added:

length: 2 bytes, little endian

msg_cnt: 2 bytes, little endian

type: 1 byte, DIRECT_COMMAND_REPLY or DIRECT_COMMAND_NO_REPLY

header: 2 bytes, holds sizes of local and global memory

Optional keyword only arguments

	local_mem

	size of the local memory

	global_mem

	size of the global memory

	sync_mode

	synchronization mode (STD, SYNC, ASYNC)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

Returns

	STD (sync_mode)

	if global_mem > 0 then reply else message counter

	ASYNC (sync_mode)

	message counter

	SYNC (sync_mode)

	reply of the LEGO EV3

	
send_system_cmd(cmd: bytes, *, reply: bool = True, verbosity: int = None) → bytes

	Send a system command to the LEGO EV3

Mandatory positional arguments

	cmd

	holds netto data only (cmd and arguments), these fields are added:

length: 2 bytes, little endian

msg_cnt: 2 bytes, little endian

type: 1 byte, SYSTEM_COMMAND_REPLY or SYSTEM_COMMAND_NO_REPLY

Optional keyword only arguments

	reply

	flag if with reply

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

Returns

reply (in case of SYSTEM_COMMAND_NO_REPLY: msg_cnt)

	
wait_for_reply(msg_cnt: bytes, *, verbosity: int = None) → bytes

	Ask the LEGO EV3 for a reply and wait until it is received

Mandatory positional arguments

	msg_cnt

	is the message counter of the corresponding send_direct_cmd

Optional keyword only arguments

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

Returns

reply to the direct command (without len, msg_cnt and return status)

	
battery

	battery voltage [V], current [A] and percentage (as named tuple)

	
host

	mac address of EV3 device

	
memory

	total and free memory [kB] (as named tuple)

	
name

	name of EV3 device

	
network

	name, ip_adr and mac_adr of the EV3 device (as named tuple)

available only for WiFi connected devices,
mac_adr is the address of the WiFi dongle

	
protocol

	connection type

	
sensors

	all connected sensors and motors at all ports (as named tuple Sensors)

You can address a single one by e.g.:
ev3_dc.EV3.sensors.Port_3 or
ev3_dc.EV3.sensors.Port_C

	
sensors_as_dict

	all connected sensors and motors at all ports (as dict)

You can address a single one by e.g.:
ev3_dc.EV3.sensors_as_dict[ev3_dc.PORT_1] or
ev3_dc.EV3.sensors_as_dict[ev3_dc.PORT_A_SENSOR]

	
sleep

	idle minutes until EV3 shuts down, values from 0 to 120

value 0 says: never shut down

	
sync_mode

	sync mode (standard, asynchronous, synchronous)

	STD

	use DIRECT_COMMAND_REPLY only if global_mem > 0,
wait for reply if there is one.

	ASYNC

	use DIRECT_COMMAND_REPLY only if global_mem > 0,
never wait for reply (it’s the task of the calling program).

	SYNC

	always use DIRECT_COMMAND_REPLY and wait for reply.

The idea is

ASYNC - if there is a reply, it must explicitly be asked for.
Control directly comes back.

SYNC - EV3 device is blocked and control comes back,
when direct command is finished, which means
synchronicity of program and EV3 device.

STD - direct commands with no reply are handled like ASYNC,
direct commands with reply are handled like SYNC.

	
system

	system versions and build numbers (as named tuple System)

	os_version

	operating system version

	os_build

	operating system build number

	fw_version

	firmware version

	fw_build

	firmware build number

	hw_version

	hardware version

	
verbosity

	level of verbosity (prints on stdout), values 0, 1 or 2

	
volume

	sound volume [%], values from 0 to 100

Touch

Touch is a subclass of EV3 and allows to read data from a touch
sensor, which may be an EV3-Touch or a NXT-Touch.

	
class ev3_dc.Touch(port: bytes, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, sync_mode: str = None, verbosity=0)

	EV3 touch, controls a single touch sensor

Positional Arguments

	port

	port of touch sensor (PORT_1, PORT_2, PORT_3 or PORT_4)

Keyword only Arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object (its connections will be used)

	sync mode (standard, asynchronous, synchronous)

	STD - if reply then use DIRECT_COMMAND_REPLY and
wait for reply.

ASYNC - if reply then use DIRECT_COMMAND_REPLY,
but never wait for reply (it’s the task of the calling program).

SYNC - Always use DIRECT_COMMAND_REPLY and wait for reply,
which may be empty.

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
clear() → None

	clears bump counter of touch sensor

	
bumps

	number of bumps since last clearing of bump counter

	
port

	port, where touch sensor is connected (PORT_1, PORT_2, PORT_3 or PORT_4)

	
sensor_type

	type of sensor

	
touched

	flag, that tells if sensor is currently touched

Infrared

Infrared is a subclass of EV3 and allows to read data from an infrared
sensor. It uses three modes of the infrared sensor:

	proximity mode, which measures the distance between the
sensor an a surface in front of the sensor.

	seeker mode, which measures the position (heading and distance) of
up to four beacons.

	remode mode, which reads the currently pressed buttons of up to
four beacons.

	
class ev3_dc.Infrared(port: bytes, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, channel: int = None, verbosity=0)

	controls a single infrared sensor

Positional Arguments

	port

	port of infrared sensor (PORT_1, PORT_2, PORT_3 or PORT_4)

Keyword only Arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	channel

	beacon sends on this channel (1, 2, 3, 4)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
beacon

	heading and distance [m] of detected the beacon (seeker mode).
returned heading is between -25 and 25.

-25 stands for far left

0 stands for straight forward

25 stands for far right

returned distance is between 0.01 and 1.00 m.

returns either None or namedtuple Beacon with heading and distance

	
beacons

	headings and distances [m] of detected beacons (seeker mode).
returned headings are between -25 and 25:

-25 stands for far left

0 stands for straight forward

25 stands for far right

returned distances are between 0.01 and 1.00 m.

returns a tuple of four items, one per channel.
Each of them is either None or
a namedtuple Beacon with heading and distance

	
channel

	selected channel, on which the beacon sends

	
distance

	distance [m], where the sensor detected something (proximity mode).
returned distances are between 0.01 and 1.00 m.
None stands for ‘seen nothing’.

	
port

	port, where sensor is connected (PORT_1, PORT_2, PORT_3 or PORT_4)

	
remote

	heading and distance [m] of detected beacon (remote mode)
returned heading is between -25 and 25:

-25 stands for far left

0 stands for straight forward

25 stands for far right

returned distance is between 0.01 and 1.00 m.

returns either None or namedtuple Beacon with heading and distance

	
remotes

	headings and distances [m] of detected beacons (remote mode).
returned headings are between -25 and 25:

-25 stands for far left

0 stands for straight forward

25 stands for far right

returned distances are between 0.01 and 1.00 m.

returns a tuple of four items, each of them is either None or
a namedtuple Beacon with heading and distance

Ultrasonic

Ultrasonic is a subclass of EV3 and allows to read data from an
ultrasonic sensor, which may be an EV3-Ultrasonic or a
NXT-Ultrasonic. It uses mode EV3-Ultrasonic-Cm
(resp. NXT-Ultrasonic-Cm).

	
class ev3_dc.Ultrasonic(port: bytes, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, verbosity=0)

	controls a single ultrasonic sensor in cm mode

Positional Arguments

	port

	port of ultrasonic sensor (PORT_1, PORT_2, PORT_3 or PORT_4)

Keyword only Arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
distance

	distance [m] ahead, where the sensor detected something

distances are between 0.01 and 2.55 m. None stands for ‘seen nothing’

	
port

	port, where sensor is connected (PORT_1, PORT_2, PORT_3 or PORT_4)

	
sensor_type

	type of sensor

Color

Color is a subclass of EV3 and allows to read data from a
color sensor, which may be an EV3-Color or a
NXT-Color. It uses modes EV3-Color-Reflected,
(resp. NXT-Color-Reflected).

	
class ev3_dc.Color(port: bytes, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, channel: int = None, verbosity=0)

	controls a single color sensor

Mandatory positional Arguments

	port

	port of color sensor (PORT_1, PORT_2, PORT_3 or PORT_4)

Keyword only Arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
ambient

	intensity of ambient light in percent [0 - 100]

uses modes EV3-Color-Ambient or NXT-Color-Ambient

	
color

	surface color in front of the sensor

0: none, 1: black, 2: blue, 3: green, 4: yellow, 5: red,
6: white, 7: brown

uses modes EV3-Color-Color or NXT-Color-Color

	
port

	port, where sensor is connected (PORT_1, PORT_2, PORT_3 or PORT_4)

	
reflected

	intensity of the reflected (red) light in percent [0 - 100]

uses modes EV3-Color-Reflected or NXT-Color-Reflected

	
rgb

	surface color in front of the sensor as red, green, blue intensities

intensities are white balanced reflected light intensities [0 - 255]

uses mode EV3-Color-Color, does not work with NXT-Color-Color

	
rgb_raw

	surface color in front of the sensor as red, green, blue intensities

intensities are reflected light intensities [0 - 1024]

uses mode EV3-Color-Color, does not work with NXT-Color-Color

	
rgb_white_balance

	perfect white surface in front of the sensor for calibration

returned intensities are raw reflected light intensities [0 - 1024]

uses mode EV3-Color-Color, does not work with NXT-Color-Color

Gyro

Gyro is a subclass of EV3 and allows to read data from a
gyro sensor (EV3-Gyro). It uses mode EV3-Gyro-Rate & Angle.

	
class ev3_dc.Gyro(port: bytes, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, verbosity=0)

	controls a single gyro sensor

Positional Arguments

	port

	port of gyro sensor (PORT_1, PORT_2, PORT_3 or PORT_4)

Keyword only Arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
reset(angle=0) → int

	define current angle to be angle 0 (or another given value)

Optional keyword only arguments

	angle

	sets the current angle to this value

Returns

current angle in previous normalization

	
angle

	angle [degree] measured by gyro sensor

	
port

	port, where sensor is connected (PORT_1, PORT_2, PORT_3 or PORT_4)

	
rate

	rate [degree/second] measured by gyro sensor

	
sensor_type

	type of sensor

	
state

	angle [degree] and rate [degree/second] measured by gyro sensor

Sound

Sound is a subclass of EV3 and provides higher order methods for
the EV3 sound.

	
class ev3_dc.Sound(*, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, verbosity: int = 0, volume: int = None)

	basic sound functionality

Keyword only arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	volume

	sound volume [%], values from 0 to 100

	
duration(path: str, *, local: bool = False) → float

	detemines duration of a sound file by reading its header

Mandatory positional arguments

	path

	name of the sound file (may be without extension “.rsf”)
as absolute path, or relative to /home/root/lms2012/sys/

Optional keyword only arguments

	local

	flag, if path is a location on the local host

	
play_sound(path: str, *, volume: int = None, repeat: bool = False, local: bool = False) → None

	plays a sound file

Mandatory positional arguments

	path

	name of the sound file (may be without extension “.rsf”)
as absolute path, or relative to /home/root/lms2012/sys/

Keyword only arguments

	volume

	volume [0 - 100] of tone (defaults to attribute volume)

	repeat

	flag, if repeatedly playing

	local

	flag, if path is a location on the local host (PC)

	
sound(path: str, *, volume: int = None, duration: float = None, repeat: bool = False, local: bool = False) → thread_task.task.Task

	returns a Task object, which plays a sound file

Mandatory positional arguments

	path

	name of the sound file (may be without extension “.rsf”)
as absolute path, or relative to /home/root/lms2012/sys/

Optional keyword only arguments

	volume

	volume [0 - 100] of tone (defaults to attribute volume)

	duration

	total duration in sec.,
in combination with repeat, this means interruption,

	repeat

	flag, if repeatedly playing (unlimited if no duration is set)

	local

	flag, if path is a location on the local host

	
stop_sound() → None

	stops the sound

	
tone(freq: int, *, duration: numbers.Number = None, volume: int = None) → None

	plays a tone

Mandatory positional arguments

	freq

	frequency of tone, range [250 - 10000]

Optional keyword only arguments

	duration

	duration (sec.) of the tone (no duration means forever)

	volume

	volume [0 - 100] of tone

Jukebox

Jukebox is a subclass of Sound and provides higher order methods for
tones and LEDs.

	
class ev3_dc.Jukebox(*, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, volume: int = None, temperament: int = 440, verbosity: int = 0)

	plays songs and uses LEDs

Keyword only arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	volume

	sound volume [%], values from 0 to 100

	temperament

	temperament of the tones (default: 440 Hz)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
change_color(led_pattern: bytes) → None

	changes LED color

	Positional arguments:

	
	led_pattern:

	color of LEDs, f.i. ev3.LED_RED

	
play_tone(tone: str, *, duration: numbers.Number = None, volume: int = None) → None

	plays a tone

Mandatory positional arguments

	tone

	name of tone f.i. “c’”, “cb’’”, “c#”

Optional keyword only arguments

	duration

	length (sec.) of the tone (no duration means forever)

	volume

	volume [0 - 100] of tone (defaults to attribute volume)

	
song(song: dict, *, volume: int = None) → thread_task.task.Task

	returns a Task object, that plays a song

Mandatory positional arguments

	song

	dict with song data (e.g. ev3.HAPPY_BIRTHDAY)

Keyword only arguments

	volume

	volume [0 - 100] of tone (defaults to attribute volume)

	
temperament

	temperament of the tones (default: 440 Hz)

Voice

Voice is a subclass of Sound and provides higher order methods for
speaking. It supports text to speech [https://en.wikipedia.org/wiki/Speech_synthesis] and calls gTTS [https://gtts.readthedocs.io/en/latest/index.html], which needs an
internet connection. Voice allows to select the language, the top
level domain and a slower reading speed by supporting gTTS’s
attributes lang, tld and slow.

gTTS answers with mp3 data, therefore Voice calls ffmpeg [https://ffmpeg.org/] to convert mp3 to pcm. If ffmpeg is not
installed on your system, Voice will not work.

	
class ev3_dc.Voice(*, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, volume: int = None, lang: str = 'en', tld: str = 'com', slow: bool = False, verbosity: int = 0)

	lets the EV3 device speak tts (text to sound)

Keyword only arguments (either protocol and host or ev3_obj)

	protocol

	either ev3_dc.BLUETOOTH, ev3_dc.USB or ev3_dc.WIFI

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object
(its already established connection will be used)

	filesystem

	already existing FileSystem object

	volume

	sound volume [%], values from 0 to 100

	lang

	language, e.g. ‘it’, ‘fr, ‘de’, ‘en’ (default)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
speak(txt: str, *, lang: str = None, tld: str = None, slow: bool = None, duration: numbers.Number = None, volume: int = None) → thread_task.task.Task

	let the EV3 device speak some text

Mandatory positional arguments

	txt

	text to speak

Optional keyword only arguments

	lang

	language, e.g. ‘it’, ‘fr, ‘de’, ‘en’ (default)

	tld

	top level domain of google server, e.g. ‘de’, ‘co.jp’, ‘com’ (default)

	slow

	reads text more slowly. Defaults to False

	duration

	length (sec.) of the tone (no duration means forever)

	volume

	volume [0 - 100] of tone (defaults to attribute volume)

Motor

Motor is a subclass of EV3 and provides higher order methods for motor
movements.

	
class ev3_dc.Motor(port: int, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, speed: int = 10, ramp_up: int = 15, ramp_up_time: float = 0.15, ramp_down: int = 15, ramp_down_time: float = 0.15, delta_time: numbers.Number = None, verbosity: int = 0)

	EV3 motor, moves a single motor

Mandatory positional arguments

	port

	port of motor (PORT_A, PORT_B, PORT_C or PORT_D)

Keyword only arguments (either protocol and host or ev3_obj)

	protocol

	BLUETOOTH == ‘Bluetooth’
USB == ‘Usb’
WIFI == ‘WiFi’

	host

	mac-address of the LEGO EV3 (f.i. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object (its connections will be used)

	speed

	percentage of maximum speed [1 - 100] (default is 10)

	ramp_up

	degrees for ramp-up (default is 15)

	ramp_up_time

	duration of ramp-up (used by move_for, default is 0.1 sec.)

	ramp_down

	degrees for ramp-down (default is 15)

	ramp_down_time

	duration of ramp-down (used by move_for, default is 0.1 sec.)

	delta_time

	timespan between introspections [s]
(default depends on protocol,
USB: 0.2 sec., WIFI: 0.1 sec., USB: 0.05 sec.)

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
cont() → None

	continues a stopped movement

	
cont_as_task() → thread_task.task.Task

	continues a stopped movement

Returns

thread_task.Task object, which does the continuing

	
move_by(degrees: int, *, speed: int = None, ramp_up: int = None, ramp_down: int = None, brake: bool = False, duration: numbers.Number = None) → thread_task.task.Task

	exact and smooth movement of the motor by a given angle.

Positional Arguments

	degrees

	direction (sign) and angle (degrees) of movement

Keyword Arguments

	speed

	percentage of maximum speed [1 - 100]

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	Flag if ending with floating motor (False) or active brake (True).

	duration

	duration of Task execution [s] (waits if movement lasts shorter)

Returns

Task object, that can be started, stopped and continued.

	
move_for(duration: float, *, speed: int = None, direction: int = 1, ramp_up_time: float = None, ramp_down_time: float = None, brake: bool = False) → thread_task.task.Task

	start moving the motor for a given duration.

Mandatory positional arguments

	duration

	duration of the movement [sec.]

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	direction

	direction of movement (-1 or 1)

	ramp_up_time

	duration time for ramp-up [sec.]

	ramp_down_time

	duration time for ramp-down [sec.]

	brake

	flag if ending with floating motor (False) or active brake (True).

Returns

Task object, which can be started, stopped and continued.

	
move_to(position: int, *, speed: int = None, ramp_up: int = None, ramp_down: int = None, brake: bool = False, duration: numbers.Number = None) → thread_task.task.Task

	move the motor to a given position.

Mandatory positional arguments

	position

	target position (degrees)

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	flag if ending with floating motor (False) or active brake (True).

	duration

	duration of Task execution [s] (waits if movement lasts shorter)

Returns

Task object, which can be started, stopped and continued.

	
start_move(*, speed: int = None, direction: int = 1, ramp_up_time: float = None) → None

	starts unlimited movement of the motor.

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	direction

	direction of movement (-1 or 1)

	ramp_up_time

	duration time for ramp-up [sec.]

	
start_move_by(degrees: int, *, speed: int = None, ramp_up: int = None, ramp_down: int = None, brake: bool = False, _control: bool = False) → None

	starts moving the motor by a given angle (without time control).

Positional Arguments

	degrees

	direction (sign) and angle (degrees) of movement

Keyword Arguments

	speed

	percentage of maximum speed [1 - 100]

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	Flag if ending with floating motor (False) or active brake (True).

	
start_move_for(duration: float, *, speed: int = None, direction: int = 1, ramp_up_time: float = None, ramp_down_time: float = None, brake: bool = False, _control: bool = False) → None

	start moving the motor for a given duration.

Mandatory positional arguments

	duration

	duration of the movement [sec.]

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	direction

	direction of movement (-1 or 1)

	ramp_up_time

	duration time for ramp-up [sec.]

	ramp_down_time

	duration time for ramp-down [sec.]

	brake

	flag if ending with floating motor (False) or active brake (True).

	
start_move_to(position: int, *, speed: int = None, ramp_up: int = None, ramp_down: int = None, brake: bool = False, _control: bool = False)

	start moving the motor to a given position (without time control).

Mandatory positional arguments

	position

	target position (degrees)

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	flag if ending with floating motor (False) or active brake (True).

	
stop(*, brake: bool = False) → None

	stops the current motor movement, sets or releases brake

Keyword Arguments

	brake

	flag if stopping with active brake

	
stop_as_task(*, brake: bool = False) → thread_task.task.Task

	stops the current motor movement, with or without brake
(can be used to release brake)

Optional keyword only arguments

	brake

	flag if stopping with active brake

Returns

thread_task.Task object, which does the stopping

	
busy

	Flag if motor is currently busy

	
delta_time

	timespan between introspections [s]

	
motor_type

	type of motor (7: EV3-Large, 8: EV3-Medium,)

	
port

	port of motor (default: PORT_A)

	
position

	current position of motor [degree]

	
ramp_down

	degrees for ramp-down (default is 15)

	
ramp_down_time

	seconds for ramp-down of timed movements (default is 0.1)

	
ramp_up

	degrees for ramp-up (default is 15)

	
ramp_up_time

	seconds for ramp-up of timed movements (default is 0.1)

	
speed

	speed of movements in percentage of maximum speed [1 - 100]
(default is 10)

TwoWheelVehicle

TwoWheelVehicle is a subclass of EV3 and provides higher order methods
for moving or driving a vehicle with two drived wheels. It tracks the
position of the vehicle.

	
class ev3_dc.TwoWheelVehicle(radius_wheel: numbers.Number, tread: numbers.Number, *, protocol: str = None, host: str = None, ev3_obj: ev3_dc.ev3.EV3 = None, speed: int = 10, ramp_up: int = 30, ramp_down: int = 30, delta_time: numbers.Number = None, port_left: bytes = 1, port_right: bytes = 8, polarity_left: int = 1, polarity_right: int = 1, tracking_callback: Callable = None, verbosity: int = 0)

	EV3 vehicle with two drived wheels

Establishes a connection to a LEGO EV3 device

Mandatory positional arguments

	radius_wheel

	radius of the wheels [m]

	tread:

	the vehicles tread [m]

Keyword only arguments (either protocol and host or ev3_obj)

	protocol

	BLUETOOTH == ‘Bluetooth’,
USB == ‘Usb’,
WIFI == ‘WiFi’

	host

	mac-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	an existing EV3 object (its connections will be used)

	speed

	percentage of maximum speed [1 - 100] (default is 10)

	ramp_up

	degrees for ramp-up (default is 30)

	ramp_down

	degrees for ramp-down (default is 30)

	delta_time

	timespan between introspections [s]
(default depends on protocol,
USB: 0.2 sec., WIFI: 0.1 sec., USB: 0.05 sec.)

	port_left

	port of left motor (PORT_A, PORT_B, PORT_C or PORT_D)

	port_right

	port of right motor (PORT_A, PORT_B, PORT_C or PORT_D)

	polarity_left

	polarity of left motor rotation, values: -1, 1 (default)

	polarity_right

	polarity of right motor rotation, values: -1, 1 (default)

	tracking_callback

	callable, which frequently tells current position,
its single argument must be of type VehiclePosition

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout)

	
cont() → None

	continues stopped movement

	
drive_straight(distance: numbers.Number, *, speed: int = None, ramp_up: int = None, ramp_down: int = None, brake: bool = False) → thread_task.task.Task

	drives the vehicle straight by a given distance

Mandatory positional arguments

	distance

	direction (sign) and distance (meters) of straight movement

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	flag if ending with floating motors (False) or active brake (True).

Returns

Task object, which can be started, stopped and continued.

	
drive_turn(angle: numbers.Number, radius: numbers.Number, *, speed: int = None, back: bool = False, ramp_up: int = None, ramp_down: int = None, brake: bool = False) → thread_task.task.Task

	starts driving the vehicle a turn by given angle and radius

Mandatory positional arguments

	angle

	angle of turn (degrees),
positive sign: to the left,
negative sign: to the right

	radius

	radius of turn (meters)

Optional keyword only arguments

	speed

	percentage of maximum speed [1 - 100]

	back

	flag if backwards

	ramp_up

	degrees for ramp-up

	ramp_down

	degrees for ramp-down

	brake

	Flag if ending with floating motors (False) or active brake (True).

Returns

Task object, which can be started, stopped and continued.

	
move(speed: int, turn: int) → None

	Starts unlimited synchronized movement of the vehicle

Mandatory positional arguments

	speed

	direction (sign) and speed of movement
as percentage of maximum speed [-100 - 100]

	turn

	type of turn [-200 - 200]

-200: circle right on place

-100: turn right with unmoved right wheel

0 : straight

100: turn left with unmoved left wheel

200: circle left on place

	
stop(brake: bool = False) → None

	stops the current motor movements, sets or releases brake

Keyword Arguments

	brake

	flag if stopping with active brake

	
busy

	Flag if motors are currently busy

	
motor_pos

	current positions of left and right motor [degree] (as named tuple)

	
polarity_left

	polarity of left motor rotation (values: -1, 1, default: 1)

	
polarity_right

	polarity of left motor rotation (values: -1, 1, default: 1)

	
port_left

	port of left wheel (default: PORT_D)

	
port_right

	port of right wheel (default: PORT_A)

	
position

	current vehicle position (as named tuple)

x and x-coordinates are in meter,
orientation is in degree [-180 - 180]

	
ramp_down

	degrees for ramp-down

	
ramp_up

	degrees for ramp-up

	
speed

	speed as percentage of maximum speed [1 - 100]

	
tracking_callback

	callable, which frequently tells current vehicle position,
its single argument must be of type VehiclePosition

FileSystem

FileSystem is a subclass of EV3 and provides higher order methods for
the filesystem of an EV3 device. It allows to read and write EV3’s
files or directories.

	
class ev3_dc.FileSystem(*, protocol: str = None, host: str = None, ev3_obj: Optional[ev3_dc.ev3.EV3] = None, sync_mode: str = None, verbosity=0)

	Access to EV3’s filesystem

Establish a connection to a LEGO EV3 device

Keyword arguments (either protocol and host or ev3_obj)

	protocol

	‘Bluetooth’, ‘USB’ or ‘WiFi’

	host

	MAC-address of the LEGO EV3 (e.g. ‘00:16:53:42:2B:99’)

	ev3_obj

	existing EV3 object (its connections will be used)

	sync mode (standard, asynchronous, synchronous)

	STD - if reply then use DIRECT_COMMAND_REPLY and
wait for reply.

ASYNC - if reply then use DIRECT_COMMAND_REPLY,
but never wait for reply (it’s the task of the calling program).

SYNC - Always use DIRECT_COMMAND_REPLY and wait for reply,
which may be empty.

	verbosity

	level (0, 1, 2) of verbosity (prints on stdout).

	
copy_file(path_source: str, path_dest: str) → None

	Copies a file in EV3’s file system from
its old location to a new one
(no error if the file doesn’t exist)

Mandatory positional arguments

	path_source

	absolute or relative path (from “/home/root/lms2012/sys/”)
of the existing file

	path_dest

	absolute or relative path of the new file

	
create_dir(path: str) → None

	Create a directory in EV3’s file system

Mandatory positional arguments

	path

	absolute or relative path (from “/home/root/lms2012/sys/”)

	
del_dir(path: str, *, secure: bool = True) → None

	Delete a directory in EV3’s file system

Mandatory positional arguments

	path

	absolute or relative path (from “/home/root/lms2012/sys/”)

Optional keyword only arguments

	secure

	flag, if the directory must be empty

	
del_file(path: str) → None

	Delete a file in EV3’s file system

Mandatory positional arguments

	path

	absolute or relative path (from “/home/root/lms2012/sys/”)
of the file

	
list_dir(path: str) → dict

	Read one EV3 directory’s content

Mandatory positional arguments

	path

	absolute or relative path (from “/home/root/lms2012/sys/”)
to the directory (f.i. “/bin”)

Returns

	subfolders

	tuple of strings (names)

	files

	tuple of tuples (name:str, size:int, md5:str)

	
load_file(path_source: str, path_dest: str, *, check: bool = True) → None

	Copy a local file to EV3’s file system

Mandatory positional arguments

	path_source

	absolute or relative path of the existing file
in the local file system

	path_dest

	absolute or relative path (from “/home/root/lms2012/sys/”)
in EV3’s file system

Optional keyword only aguments

	check

	flag for check if file already exists with identical MD5 checksum

	
read_file(path: str) → bytes

	Read one of EV3’s files

Mandatory positional arguments

	path

	absolute or relative path to file (f.i. “/bin/sh”)

	
write_file(path: str, data: bytes, *, check: bool = True) → None

	Create a file in EV3’s file system and write data into it

Mandatory positional arguments

	path

	absolute or relative path (from “/home/root/lms2012/sys/”)
of the file

	data

	data to write into the file

Optional keyword only arguments

	check

	flag for check if file already exists with identical MD5 checksum

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ambient (ev3_dc.Color attribute)

 	
 	angle (ev3_dc.Gyro attribute)

B

 	
 	battery (ev3_dc.EV3 attribute)

 	beacon (ev3_dc.Infrared attribute)

 	beacons (ev3_dc.Infrared attribute)

 	
 	bumps (ev3_dc.Touch attribute)

 	busy (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

C

 	
 	change_color() (ev3_dc.Jukebox method)

 	channel (ev3_dc.Infrared attribute)

 	clear() (ev3_dc.Touch method)

 	Color (class in ev3_dc)

 	color (ev3_dc.Color attribute)

 	
 	cont() (ev3_dc.Motor method)

 	(ev3_dc.TwoWheelVehicle method)

 	cont_as_task() (ev3_dc.Motor method)

 	copy_file() (ev3_dc.FileSystem method)

 	create_dir() (ev3_dc.FileSystem method)

D

 	
 	del_dir() (ev3_dc.FileSystem method)

 	del_file() (ev3_dc.FileSystem method)

 	delta_time (ev3_dc.Motor attribute)

 	distance (ev3_dc.Infrared attribute)

 	(ev3_dc.Ultrasonic attribute)

 	
 	drive_straight() (ev3_dc.TwoWheelVehicle method)

 	drive_turn() (ev3_dc.TwoWheelVehicle method)

 	duration() (ev3_dc.Sound method)

E

 	
 	EV3 (class in ev3_dc)

 	
 	ev3_dc (module)

F

 	
 	FileSystem (class in ev3_dc)

G

 	
 	GVX() (in module ev3_dc)

 	
 	Gyro (class in ev3_dc)

H

 	
 	host (ev3_dc.EV3 attribute)

I

 	
 	Infrared (class in ev3_dc)

J

 	
 	Jukebox (class in ev3_dc)

L

 	
 	LCS() (in module ev3_dc)

 	LCX() (in module ev3_dc)

 	
 	list_dir() (ev3_dc.FileSystem method)

 	load_file() (ev3_dc.FileSystem method)

 	LVX() (in module ev3_dc)

M

 	
 	memory (ev3_dc.EV3 attribute)

 	Motor (class in ev3_dc)

 	motor_pos (ev3_dc.TwoWheelVehicle attribute)

 	motor_type (ev3_dc.Motor attribute)

 	
 	move() (ev3_dc.TwoWheelVehicle method)

 	move_by() (ev3_dc.Motor method)

 	move_for() (ev3_dc.Motor method)

 	move_to() (ev3_dc.Motor method)

N

 	
 	name (ev3_dc.EV3 attribute)

 	
 	network (ev3_dc.EV3 attribute)

P

 	
 	pid() (in module ev3_dc)

 	play_sound() (ev3_dc.Sound method)

 	play_tone() (ev3_dc.Jukebox method)

 	polarity_left (ev3_dc.TwoWheelVehicle attribute)

 	polarity_right (ev3_dc.TwoWheelVehicle attribute)

 	port (ev3_dc.Color attribute)

 	(ev3_dc.Gyro attribute)

 	(ev3_dc.Infrared attribute)

 	(ev3_dc.Motor attribute)

 	(ev3_dc.Touch attribute)

 	(ev3_dc.Ultrasonic attribute)

 	
 	port_left (ev3_dc.TwoWheelVehicle attribute)

 	port_motor_input() (in module ev3_dc)

 	port_right (ev3_dc.TwoWheelVehicle attribute)

 	position (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	protocol (ev3_dc.EV3 attribute)

R

 	
 	ramp_down (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	ramp_down_time (ev3_dc.Motor attribute)

 	ramp_up (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	ramp_up_time (ev3_dc.Motor attribute)

 	rate (ev3_dc.Gyro attribute)

 	
 	read_file() (ev3_dc.FileSystem method)

 	reflected (ev3_dc.Color attribute)

 	remote (ev3_dc.Infrared attribute)

 	remotes (ev3_dc.Infrared attribute)

 	reset() (ev3_dc.Gyro method)

 	rgb (ev3_dc.Color attribute)

 	rgb_raw (ev3_dc.Color attribute)

 	rgb_white_balance (ev3_dc.Color attribute)

S

 	
 	send_direct_cmd() (ev3_dc.EV3 method)

 	send_system_cmd() (ev3_dc.EV3 method)

 	sensor_type (ev3_dc.Gyro attribute)

 	(ev3_dc.Touch attribute)

 	(ev3_dc.Ultrasonic attribute)

 	sensors (ev3_dc.EV3 attribute)

 	sensors_as_dict (ev3_dc.EV3 attribute)

 	sleep (ev3_dc.EV3 attribute)

 	song() (ev3_dc.Jukebox method)

 	Sound (class in ev3_dc)

 	sound() (ev3_dc.Sound method)

 	speak() (ev3_dc.Voice method)

 	
 	speed (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	start_move() (ev3_dc.Motor method)

 	start_move_by() (ev3_dc.Motor method)

 	start_move_for() (ev3_dc.Motor method)

 	start_move_to() (ev3_dc.Motor method)

 	state (ev3_dc.Gyro attribute)

 	stop() (ev3_dc.Motor method)

 	(ev3_dc.TwoWheelVehicle method)

 	stop_as_task() (ev3_dc.Motor method)

 	stop_sound() (ev3_dc.Sound method)

 	sync_mode (ev3_dc.EV3 attribute)

 	system (ev3_dc.EV3 attribute)

T

 	
 	temperament (ev3_dc.Jukebox attribute)

 	tone() (ev3_dc.Sound method)

 	Touch (class in ev3_dc)

 	
 	touched (ev3_dc.Touch attribute)

 	tracking_callback (ev3_dc.TwoWheelVehicle attribute)

 	TwoWheelVehicle (class in ev3_dc)

U

 	
 	Ultrasonic (class in ev3_dc)

V

 	
 	verbosity (ev3_dc.EV3 attribute)

 	
 	Voice (class in ev3_dc)

 	volume (ev3_dc.EV3 attribute)

W

 	
 	wait_for_reply() (ev3_dc.EV3 method)

 	
 	write_file() (ev3_dc.FileSystem method)

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 ev3_dc	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ambient (ev3_dc.Color attribute)

 	
 	angle (ev3_dc.Gyro attribute)

B

 	
 	battery (ev3_dc.EV3 attribute)

 	beacon (ev3_dc.Infrared attribute)

 	beacons (ev3_dc.Infrared attribute)

 	
 	bumps (ev3_dc.Touch attribute)

 	busy (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

C

 	
 	change_color() (ev3_dc.Jukebox method)

 	channel (ev3_dc.Infrared attribute)

 	clear() (ev3_dc.Touch method)

 	Color (class in ev3_dc)

 	color (ev3_dc.Color attribute)

 	
 	cont() (ev3_dc.Motor method)

 	(ev3_dc.TwoWheelVehicle method)

 	cont_as_task() (ev3_dc.Motor method)

 	copy_file() (ev3_dc.FileSystem method)

 	create_dir() (ev3_dc.FileSystem method)

D

 	
 	del_dir() (ev3_dc.FileSystem method)

 	del_file() (ev3_dc.FileSystem method)

 	delta_time (ev3_dc.Motor attribute)

 	distance (ev3_dc.Infrared attribute)

 	(ev3_dc.Ultrasonic attribute)

 	
 	drive_straight() (ev3_dc.TwoWheelVehicle method)

 	drive_turn() (ev3_dc.TwoWheelVehicle method)

 	duration() (ev3_dc.Sound method)

E

 	
 	EV3 (class in ev3_dc)

 	
 	ev3_dc (module)

F

 	
 	FileSystem (class in ev3_dc)

G

 	
 	GVX() (in module ev3_dc)

 	
 	Gyro (class in ev3_dc)

H

 	
 	host (ev3_dc.EV3 attribute)

I

 	
 	Infrared (class in ev3_dc)

J

 	
 	Jukebox (class in ev3_dc)

L

 	
 	LCS() (in module ev3_dc)

 	LCX() (in module ev3_dc)

 	
 	list_dir() (ev3_dc.FileSystem method)

 	load_file() (ev3_dc.FileSystem method)

 	LVX() (in module ev3_dc)

M

 	
 	memory (ev3_dc.EV3 attribute)

 	Motor (class in ev3_dc)

 	motor_pos (ev3_dc.TwoWheelVehicle attribute)

 	motor_type (ev3_dc.Motor attribute)

 	
 	move() (ev3_dc.TwoWheelVehicle method)

 	move_by() (ev3_dc.Motor method)

 	move_for() (ev3_dc.Motor method)

 	move_to() (ev3_dc.Motor method)

N

 	
 	name (ev3_dc.EV3 attribute)

 	
 	network (ev3_dc.EV3 attribute)

P

 	
 	pid() (in module ev3_dc)

 	play_sound() (ev3_dc.Sound method)

 	play_tone() (ev3_dc.Jukebox method)

 	polarity_left (ev3_dc.TwoWheelVehicle attribute)

 	polarity_right (ev3_dc.TwoWheelVehicle attribute)

 	port (ev3_dc.Color attribute)

 	(ev3_dc.Gyro attribute)

 	(ev3_dc.Infrared attribute)

 	(ev3_dc.Motor attribute)

 	(ev3_dc.Touch attribute)

 	(ev3_dc.Ultrasonic attribute)

 	
 	port_left (ev3_dc.TwoWheelVehicle attribute)

 	port_motor_input() (in module ev3_dc)

 	port_right (ev3_dc.TwoWheelVehicle attribute)

 	position (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	protocol (ev3_dc.EV3 attribute)

R

 	
 	ramp_down (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	ramp_down_time (ev3_dc.Motor attribute)

 	ramp_up (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	ramp_up_time (ev3_dc.Motor attribute)

 	rate (ev3_dc.Gyro attribute)

 	
 	read_file() (ev3_dc.FileSystem method)

 	reflected (ev3_dc.Color attribute)

 	remote (ev3_dc.Infrared attribute)

 	remotes (ev3_dc.Infrared attribute)

 	reset() (ev3_dc.Gyro method)

 	rgb (ev3_dc.Color attribute)

 	rgb_raw (ev3_dc.Color attribute)

 	rgb_white_balance (ev3_dc.Color attribute)

S

 	
 	send_direct_cmd() (ev3_dc.EV3 method)

 	send_system_cmd() (ev3_dc.EV3 method)

 	sensor_type (ev3_dc.Gyro attribute)

 	(ev3_dc.Touch attribute)

 	(ev3_dc.Ultrasonic attribute)

 	sensors (ev3_dc.EV3 attribute)

 	sensors_as_dict (ev3_dc.EV3 attribute)

 	sleep (ev3_dc.EV3 attribute)

 	song() (ev3_dc.Jukebox method)

 	Sound (class in ev3_dc)

 	sound() (ev3_dc.Sound method)

 	speak() (ev3_dc.Voice method)

 	
 	speed (ev3_dc.Motor attribute)

 	(ev3_dc.TwoWheelVehicle attribute)

 	start_move() (ev3_dc.Motor method)

 	start_move_by() (ev3_dc.Motor method)

 	start_move_for() (ev3_dc.Motor method)

 	start_move_to() (ev3_dc.Motor method)

 	state (ev3_dc.Gyro attribute)

 	stop() (ev3_dc.Motor method)

 	(ev3_dc.TwoWheelVehicle method)

 	stop_as_task() (ev3_dc.Motor method)

 	stop_sound() (ev3_dc.Sound method)

 	sync_mode (ev3_dc.EV3 attribute)

 	system (ev3_dc.EV3 attribute)

T

 	
 	temperament (ev3_dc.Jukebox attribute)

 	tone() (ev3_dc.Sound method)

 	Touch (class in ev3_dc)

 	
 	touched (ev3_dc.Touch attribute)

 	tracking_callback (ev3_dc.TwoWheelVehicle attribute)

 	TwoWheelVehicle (class in ev3_dc)

U

 	
 	Ultrasonic (class in ev3_dc)

V

 	
 	verbosity (ev3_dc.EV3 attribute)

 	
 	Voice (class in ev3_dc)

 	volume (ev3_dc.EV3 attribute)

W

 	
 	wait_for_reply() (ev3_dc.EV3 method)

 	
 	write_file() (ev3_dc.FileSystem method)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/power_consumption.png
2.6

2.4

2.2

2.0

18

16

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Introduction

 		
 Installation

 		
 Examples

 		
 EV3

 		
 Connect with the EV3 device

 		
 EV3’s properties

 		
 Direct commands

 		
 Touch

 		
 Asking for the current state

 		
 Multiple instances of class Touch

 		
 Bump-Mode

 		
 Infrared

 		
 Asking for the distance from a surface

 		
 Asking for a beacon’s position

 		
 Using up to four beacons

 		
 Using the beacon as a remote control

 		
 Reading multiple remote control channels simultaneously

 		
 Ultrasonic

 		
 Asking for the distance from a surface

 		
 Color

 		
 The reflected intensity of red light

 		
 Recognize colors

 		
 Red green blue Color Intensities

 		
 Balanced red green blue Color Intensities

 		
 Ambient light intensity

 		
 Gyro

 		
 Asking for the current orientation angle

 		
 Asking for the current rotation rate

 		
 Asking for the current state (angle and rate)

 		
 Reset the original orientation

 		
 Sound

 		
 Play a Tone

 		
 Play a Sound File

 		
 Play a Sound File as a Thread Task

 		
 Play a local Sound File

 		
 Jukebox

 		
 Change Color

 		
 Play Tone

 		
 Playing the EU-Antemn

 		
 Combine Happy Birthday with the Triad

 		
 Singing Canon with an EV3 brick

 		
 Voice

 		
 Get your EV3 Device Speaking

 		
 Use Voice for your User Interface

 		
 Combine Text to Speech with existing Sound Files

 		
 Motor

 		
 Properties of Class Motor

 		
 Precise and Smooth Motor Movements

 		
 Timed and Smooth Motor Movements

 		
 Unlimited Motor Movements

 		
 Two Wheel Vehicle

 		
 Calibration

 		
 Precise Driving

 		
 Tracking the vehicle’s Position and Orientation

 		
 Regulated Movements

 		
 File System

 		
 Method list_dir

 		
 Method create_dir

 		
 Method del_dir

 		
 Method read_file

 		
 Method write_file

 		
 Method copy_file

 		
 Method del_file

 		
 PID Controller

 		
 Background

 		
 Close but not too Close

 		
 Keep the Distance

 		
 Follow Me

 		
 API documentation

 		
 Static methods

 		
 LCX

 		
 LCS

 		
 LVX

 		
 GVX

 		
 port_motor_input

 		
 pid

 		
 Classes

 		
 EV3

 		
 Touch

 		
 Infrared

 		
 Ultrasonic

 		
 Color

 		
 Gyro

 		
 Sound

 		
 Jukebox

 		
 Voice

 		
 Motor

 		
 TwoWheelVehicle

 		
 FileSystem

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

